Comparing Implementation Strategies of Station-Based Bike Sharing in Agent-Based Travel Demand Models

Lucas Schuhmacher, Jelle Kübler, Gabriel Wilkes, Martin Kagerbauer, Peter Vortisch
{"title":"Comparing Implementation Strategies of Station-Based Bike Sharing in Agent-Based Travel Demand Models","authors":"Lucas Schuhmacher,&nbsp;Jelle Kübler,&nbsp;Gabriel Wilkes,&nbsp;Martin Kagerbauer,&nbsp;Peter Vortisch","doi":"10.1016/j.procs.2024.06.040","DOIUrl":null,"url":null,"abstract":"<div><p>Shared mobility solutions such as bike sharing services play a key role to reduce greenhouse gas emissions in urban areas. In this paper, we present an approach to model station-based bike sharing in the multi-modal agent-based travel demand model mobiTopp. We compare different implementations of how agents choose their bike pick-up and drop-off stations. In addition to two variations of distance minimization, we also present a gravity approach to represent the reliability of a system. By also comparing different behavioral attitudes of the agents towards walking, a total of six scenarios were implemented and tested. The presented approach allows to easily test scenarios with a varying number of bikes and stations. We apply our algorithm to a model for the city of Hamburg, Germany, where the mobility behavior of a total of 1.9 million agents is modeled. Our simulations show plausible results. The average distances, utilization shares of each station, and other parameters match with values from the actual service. While the different strategies result in significantly different access times, and provide further new valuable insights and options for parameterization, differences in resulting demand are small. Overall, this model provides new methods to simulate bike sharing in travel demand models, thus helps to simulate an important mode of transport of the future.</p></div>","PeriodicalId":20465,"journal":{"name":"Procedia Computer Science","volume":"238 ","pages":"Pages 396-403"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1877050924012766/pdf?md5=fb4e06587b4b8e2c8abc6caaa3d250aa&pid=1-s2.0-S1877050924012766-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877050924012766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Shared mobility solutions such as bike sharing services play a key role to reduce greenhouse gas emissions in urban areas. In this paper, we present an approach to model station-based bike sharing in the multi-modal agent-based travel demand model mobiTopp. We compare different implementations of how agents choose their bike pick-up and drop-off stations. In addition to two variations of distance minimization, we also present a gravity approach to represent the reliability of a system. By also comparing different behavioral attitudes of the agents towards walking, a total of six scenarios were implemented and tested. The presented approach allows to easily test scenarios with a varying number of bikes and stations. We apply our algorithm to a model for the city of Hamburg, Germany, where the mobility behavior of a total of 1.9 million agents is modeled. Our simulations show plausible results. The average distances, utilization shares of each station, and other parameters match with values from the actual service. While the different strategies result in significantly different access times, and provide further new valuable insights and options for parameterization, differences in resulting demand are small. Overall, this model provides new methods to simulate bike sharing in travel demand models, thus helps to simulate an important mode of transport of the future.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在基于代理的出行需求模型中比较站点式自行车共享的实施策略
自行车共享服务等共享交通解决方案在减少城市地区温室气体排放方面发挥着关键作用。在本文中,我们介绍了一种在基于多模式代理的出行需求模型 mobiTopp 中模拟基于站点的共享单车的方法。我们比较了代理如何选择自行车上落站点的不同实现方式。除了距离最小化的两种变化外,我们还提出了一种重力法来表示系统的可靠性。通过比较代理对步行的不同行为态度,我们共实施并测试了六种方案。所提出的方法可以轻松测试自行车和站点数量不同的场景。我们将算法应用于德国汉堡市的一个模型中,在该模型中,共有 190 万代理人的移动行为被建模。我们的模拟结果是可信的。平均距离、每个站点的利用率以及其他参数都与实际服务中的数值相吻合。虽然不同的策略会导致明显不同的访问时间,并为参数化提供了更多新的有价值的见解和选择,但由此产生的需求差异很小。总之,该模型提供了在出行需求模型中模拟共享单车的新方法,从而有助于模拟未来的一种重要交通方式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
期刊最新文献
Circular Supply Chains and Industry 4.0: An Analysis of Interfaces in Brazilian Foodtechs Potentials of the Metaverse for Robotized Applications in Industry 4.0 and Industry 5.0 Preface Preface Contents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1