Network modeling approaches for metabolic diseases and diabetes

IF 3.4 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Current Opinion in Systems Biology Pub Date : 2024-06-21 DOI:10.1016/j.coisb.2024.100530
Apurva Badkas , Maria Pires Pacheco , Thomas Sauter
{"title":"Network modeling approaches for metabolic diseases and diabetes","authors":"Apurva Badkas ,&nbsp;Maria Pires Pacheco ,&nbsp;Thomas Sauter","doi":"10.1016/j.coisb.2024.100530","DOIUrl":null,"url":null,"abstract":"<div><p>Metabolic diseases (MD) are amenable to network-based modeling frameworks, given the systemic perturbations induced by disrupted molecular mechanisms. We present here a brief overview of network modeling methods applied to inborn errors of metabolism (IEM), systemic metabolic conditions (mainly diabetes), and metabolism-related inflammation and autoimmune disorders. Clinical diagnosis and identification of causal agents in IEMs and uncovering the multifactorial mechanisms underlying the development of diabetes and other systemic metabolic diseases are the main challenges being addressed. The review also highlights some of the studies undertaken to investigate the role of the gut microbiome in MD, especially in diabetes. While the network frameworks employed in different modeling approaches have provided novel insights, some technique-specific limitations and overall gaps in general research trends need further attention.</p></div>","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":"39 ","pages":"Article 100530"},"PeriodicalIF":3.4000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S245231002400026X/pdfft?md5=3af7589f4c37de8917481422dc190763&pid=1-s2.0-S245231002400026X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S245231002400026X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Metabolic diseases (MD) are amenable to network-based modeling frameworks, given the systemic perturbations induced by disrupted molecular mechanisms. We present here a brief overview of network modeling methods applied to inborn errors of metabolism (IEM), systemic metabolic conditions (mainly diabetes), and metabolism-related inflammation and autoimmune disorders. Clinical diagnosis and identification of causal agents in IEMs and uncovering the multifactorial mechanisms underlying the development of diabetes and other systemic metabolic diseases are the main challenges being addressed. The review also highlights some of the studies undertaken to investigate the role of the gut microbiome in MD, especially in diabetes. While the network frameworks employed in different modeling approaches have provided novel insights, some technique-specific limitations and overall gaps in general research trends need further attention.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
代谢性疾病和糖尿病的网络建模方法
代谢性疾病(MD)因其分子机制紊乱而引起的系统性扰动,适合采用基于网络的建模框架。我们在此简要概述了应用于先天性代谢错误(IEM)、全身性代谢疾病(主要是糖尿病)以及与代谢相关的炎症和自身免疫性疾病的网络建模方法。先天性代谢畸形的临床诊断和病因鉴定,以及揭示糖尿病和其他系统性代谢疾病的多因素发病机制是目前面临的主要挑战。本综述还重点介绍了为调查肠道微生物组在糖尿病(尤其是糖尿病)中的作用而开展的一些研究。虽然不同建模方法所采用的网络框架提供了新颖的见解,但一些特定技术的局限性和总体研究趋势的差距需要进一步关注。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Opinion in Systems Biology
Current Opinion in Systems Biology Mathematics-Applied Mathematics
CiteScore
7.10
自引率
2.70%
发文量
20
期刊介绍: Current Opinion in Systems Biology is a new systematic review journal that aims to provide specialists with a unique and educational platform to keep up-to-date with the expanding volume of information published in the field of Systems Biology. It publishes polished, concise and timely systematic reviews and opinion articles. In addition to describing recent trends, the authors are encouraged to give their subjective opinion on the topics discussed. As this is such a broad discipline, we have determined themed sections each of which is reviewed once a year. The following areas will be covered by Current Opinion in Systems Biology: -Genomics and Epigenomics -Gene Regulation -Metabolic Networks -Cancer and Systemic Diseases -Mathematical Modelling -Big Data Acquisition and Analysis -Systems Pharmacology and Physiology -Synthetic Biology -Stem Cells, Development, and Differentiation -Systems Biology of Mold Organisms -Systems Immunology and Host-Pathogen Interaction -Systems Ecology and Evolution
期刊最新文献
From regulation of cell fate decisions towards patient-specific treatments, insights from mechanistic models of signalling pathways Editorial overview: Systems biology of ecological interactions across scales A critical review of multiscale modeling for predictive understanding of cancer cell metabolism Network modeling approaches for metabolic diseases and diabetes Contents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1