ToxEraser cosmetics: A new tool for substitution, towards safer cosmetic ingredients

IF 3.1 Q2 TOXICOLOGY Computational Toxicology Pub Date : 2024-07-08 DOI:10.1016/j.comtox.2024.100323
Gianluca Selvestrel , Davide Luciani , Alberto Manganaro , Federica Robino , Emilio Benfenati
{"title":"ToxEraser cosmetics: A new tool for substitution, towards safer cosmetic ingredients","authors":"Gianluca Selvestrel ,&nbsp;Davide Luciani ,&nbsp;Alberto Manganaro ,&nbsp;Federica Robino ,&nbsp;Emilio Benfenati","doi":"10.1016/j.comtox.2024.100323","DOIUrl":null,"url":null,"abstract":"<div><p>Cosmetic ingredients of choice are those appropriate for a specific commercial use and deemed safer than existing alternatives. In the LIFE VERMEER project (<span>https://www.life-vermeer.eu/</span><svg><path></path></svg>), the ToxEraser Cosmetics software was developed as a platform under which an ingredient is presented with a list of potential substitutes, from an archive of 2233 items. Key information about the safety of each item concerns: (a) the risk assessment addressed by seven regulatory and other specialized European-US authorities; (b) the safety class emerging from the systematic evaluation and integration of each authority’s assessment. Read-across analysis makes the substitution possible even when the ingredient is not included in the archive. The list of alternatives can be extended or reduced flexibly, since the commercial use of cosmetics is dictated by attributes indicating progressively detailed and hierarchically related categories. Finally, the identification of significant validated structural alerts for endpoints of interest serves in detecting which part of the structure is associated with certain hazardous properties. This tool will be joined with VERMEER Cosmolife, the other tool for cosmetics developed as part of the VERMEER project. ToxEraser offers a systematic, flexible approach to explore safer cosmetic substitutes, acknowledging the sources of evidence produced by VERMEER Cosmolife, offering a forward-looking tool for the cosmetic sector. More in general, the novelty is the shift to <em>in silico</em> models, not only to assess possible concern associated with a substance, but also to move towards safer alternatives.</p></div>","PeriodicalId":37651,"journal":{"name":"Computational Toxicology","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Toxicology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468111324000252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cosmetic ingredients of choice are those appropriate for a specific commercial use and deemed safer than existing alternatives. In the LIFE VERMEER project (https://www.life-vermeer.eu/), the ToxEraser Cosmetics software was developed as a platform under which an ingredient is presented with a list of potential substitutes, from an archive of 2233 items. Key information about the safety of each item concerns: (a) the risk assessment addressed by seven regulatory and other specialized European-US authorities; (b) the safety class emerging from the systematic evaluation and integration of each authority’s assessment. Read-across analysis makes the substitution possible even when the ingredient is not included in the archive. The list of alternatives can be extended or reduced flexibly, since the commercial use of cosmetics is dictated by attributes indicating progressively detailed and hierarchically related categories. Finally, the identification of significant validated structural alerts for endpoints of interest serves in detecting which part of the structure is associated with certain hazardous properties. This tool will be joined with VERMEER Cosmolife, the other tool for cosmetics developed as part of the VERMEER project. ToxEraser offers a systematic, flexible approach to explore safer cosmetic substitutes, acknowledging the sources of evidence produced by VERMEER Cosmolife, offering a forward-looking tool for the cosmetic sector. More in general, the novelty is the shift to in silico models, not only to assess possible concern associated with a substance, but also to move towards safer alternatives.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ToxEraser 化妆品:实现更安全化妆品成分替代的新工具
化妆品成分的选择是指那些适合特定商业用途并被认为比现有替代品更安全的成分。在 LIFE VERMEER 项目(https://www.life-vermeer.eu/)中,ToxEraser 化妆品软件被开发成一个平台,在这个平台上,可以从 2233 个项目的档案中找到潜在的替代品清单。每个项目安全性的关键信息涉及:(a)七个监管机构和其他欧洲-美国专业机构的风险评估;(b)系统评估和整合各机构评估后得出的安全等级。即使成分不在档案中,通过交叉分析也可以进行替代。由于化妆品的商业用途是由属性决定的,这些属性显示了逐步详细和层次相关的类别,因此替代品清单可以灵活扩展或缩减。最后,对相关终点的重要验证结构警报进行识别,有助于检测结构的哪一部分与某些危险特性相关。该工具将与 VERMEER Cosmolife 结合使用,后者是 VERMEER 项目开发的另一款化妆品工具。ToxEraser 提供了一种系统、灵活的方法来探索更安全的化妆品替代品,同时承认 VERMEER Cosmolife 提供的证据来源,为化妆品行业提供了一种具有前瞻性的工具。总的来说,其新颖之处在于向硅学模型的转变,这不仅是为了评估与某种物质相关的可能的问题,而且也是为了寻找更安全的替代品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computational Toxicology
Computational Toxicology Computer Science-Computer Science Applications
CiteScore
5.50
自引率
0.00%
发文量
53
审稿时长
56 days
期刊介绍: Computational Toxicology is an international journal publishing computational approaches that assist in the toxicological evaluation of new and existing chemical substances assisting in their safety assessment. -All effects relating to human health and environmental toxicity and fate -Prediction of toxicity, metabolism, fate and physico-chemical properties -The development of models from read-across, (Q)SARs, PBPK, QIVIVE, Multi-Scale Models -Big Data in toxicology: integration, management, analysis -Implementation of models through AOPs, IATA, TTC -Regulatory acceptance of models: evaluation, verification and validation -From metals, to small organic molecules to nanoparticles -Pharmaceuticals, pesticides, foods, cosmetics, fine chemicals -Bringing together the views of industry, regulators, academia, NGOs
期刊最新文献
Developing quantitative Adverse Outcome Pathways: An ordinary differential equation-based computational framework Species specific kinetics of imidacloprid and carbendazim in mouse and rat and consequences for biomonitoring In silico analysis of the melamine structural analogues interaction with calcium-sensing receptor: A potential for nephrotoxicity Modeling chemical bioaccumulation in snakes, part 1: Model development Modeling chemical bioaccumulation in snakes, part 2: Model testing and high-throughput simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1