{"title":"ToxEraser cosmetics: A new tool for substitution, towards safer cosmetic ingredients","authors":"Gianluca Selvestrel , Davide Luciani , Alberto Manganaro , Federica Robino , Emilio Benfenati","doi":"10.1016/j.comtox.2024.100323","DOIUrl":null,"url":null,"abstract":"<div><p>Cosmetic ingredients of choice are those appropriate for a specific commercial use and deemed safer than existing alternatives. In the LIFE VERMEER project (<span>https://www.life-vermeer.eu/</span><svg><path></path></svg>), the ToxEraser Cosmetics software was developed as a platform under which an ingredient is presented with a list of potential substitutes, from an archive of 2233 items. Key information about the safety of each item concerns: (a) the risk assessment addressed by seven regulatory and other specialized European-US authorities; (b) the safety class emerging from the systematic evaluation and integration of each authority’s assessment. Read-across analysis makes the substitution possible even when the ingredient is not included in the archive. The list of alternatives can be extended or reduced flexibly, since the commercial use of cosmetics is dictated by attributes indicating progressively detailed and hierarchically related categories. Finally, the identification of significant validated structural alerts for endpoints of interest serves in detecting which part of the structure is associated with certain hazardous properties. This tool will be joined with VERMEER Cosmolife, the other tool for cosmetics developed as part of the VERMEER project. ToxEraser offers a systematic, flexible approach to explore safer cosmetic substitutes, acknowledging the sources of evidence produced by VERMEER Cosmolife, offering a forward-looking tool for the cosmetic sector. More in general, the novelty is the shift to <em>in silico</em> models, not only to assess possible concern associated with a substance, but also to move towards safer alternatives.</p></div>","PeriodicalId":37651,"journal":{"name":"Computational Toxicology","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Toxicology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468111324000252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cosmetic ingredients of choice are those appropriate for a specific commercial use and deemed safer than existing alternatives. In the LIFE VERMEER project (https://www.life-vermeer.eu/), the ToxEraser Cosmetics software was developed as a platform under which an ingredient is presented with a list of potential substitutes, from an archive of 2233 items. Key information about the safety of each item concerns: (a) the risk assessment addressed by seven regulatory and other specialized European-US authorities; (b) the safety class emerging from the systematic evaluation and integration of each authority’s assessment. Read-across analysis makes the substitution possible even when the ingredient is not included in the archive. The list of alternatives can be extended or reduced flexibly, since the commercial use of cosmetics is dictated by attributes indicating progressively detailed and hierarchically related categories. Finally, the identification of significant validated structural alerts for endpoints of interest serves in detecting which part of the structure is associated with certain hazardous properties. This tool will be joined with VERMEER Cosmolife, the other tool for cosmetics developed as part of the VERMEER project. ToxEraser offers a systematic, flexible approach to explore safer cosmetic substitutes, acknowledging the sources of evidence produced by VERMEER Cosmolife, offering a forward-looking tool for the cosmetic sector. More in general, the novelty is the shift to in silico models, not only to assess possible concern associated with a substance, but also to move towards safer alternatives.
期刊介绍:
Computational Toxicology is an international journal publishing computational approaches that assist in the toxicological evaluation of new and existing chemical substances assisting in their safety assessment. -All effects relating to human health and environmental toxicity and fate -Prediction of toxicity, metabolism, fate and physico-chemical properties -The development of models from read-across, (Q)SARs, PBPK, QIVIVE, Multi-Scale Models -Big Data in toxicology: integration, management, analysis -Implementation of models through AOPs, IATA, TTC -Regulatory acceptance of models: evaluation, verification and validation -From metals, to small organic molecules to nanoparticles -Pharmaceuticals, pesticides, foods, cosmetics, fine chemicals -Bringing together the views of industry, regulators, academia, NGOs