Long-term drought prediction using deep neural networks based on geospatial weather data

IF 4.8 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Environmental Modelling & Software Pub Date : 2024-06-28 DOI:10.1016/j.envsoft.2024.106127
Alexander Marusov , Vsevolod Grabar , Yury Maximov , Nazar Sotiriadi , Alexander Bulkin , Alexey Zaytsev
{"title":"Long-term drought prediction using deep neural networks based on geospatial weather data","authors":"Alexander Marusov ,&nbsp;Vsevolod Grabar ,&nbsp;Yury Maximov ,&nbsp;Nazar Sotiriadi ,&nbsp;Alexander Bulkin ,&nbsp;Alexey Zaytsev","doi":"10.1016/j.envsoft.2024.106127","DOIUrl":null,"url":null,"abstract":"<div><p>The problem of high-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance. Yet, it is still unsolved with reasonable accuracy due to data complexity and aridity stochasticity. We tackle drought data by introducing an end-to-end approach that adopts a spatio-temporal neural network model with accessible open monthly climate data as the input. Our systematic research employs diverse proposed models and five distinct environmental regions as a testbed to evaluate the efficacy of the Palmer Drought Severity Index (PDSI) prediction. Key aggregated findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts. At the same time, the Convolutional LSTM excels in longer-term forecasting. Both models achieved high ROC AUC scores: 0.948 for one month ahead and 0.617 for twelve months ahead forecasts, becoming closer to perfect ROC-AUC by 54% and 16%, respectively, c.t. classic approaches.</p></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815224001889","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The problem of high-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance. Yet, it is still unsolved with reasonable accuracy due to data complexity and aridity stochasticity. We tackle drought data by introducing an end-to-end approach that adopts a spatio-temporal neural network model with accessible open monthly climate data as the input. Our systematic research employs diverse proposed models and five distinct environmental regions as a testbed to evaluate the efficacy of the Palmer Drought Severity Index (PDSI) prediction. Key aggregated findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts. At the same time, the Convolutional LSTM excels in longer-term forecasting. Both models achieved high ROC AUC scores: 0.948 for one month ahead and 0.617 for twelve months ahead forecasts, becoming closer to perfect ROC-AUC by 54% and 16%, respectively, c.t. classic approaches.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用基于地理空间气象数据的深度神经网络进行长期干旱预测
提前一年进行高质量的干旱预测对于农业规划和保险至关重要。然而,由于数据的复杂性和干旱的随机性,这一问题仍未得到合理准确的解决。我们通过引入一种端到端的方法来解决干旱数据问题,该方法采用时空神经网络模型,并以可获取的公开月度气候数据作为输入。我们的系统研究采用了不同的拟议模型和五个不同的环境区域作为试验平台,以评估帕尔默干旱严重程度指数(PDSI)预测的有效性。主要的综合研究结果表明,Transformer 模型 EarthFormer 在进行准确的短期(长达 6 个月)预测方面表现出色。同时,卷积 LSTM 在长期预测方面表现出色。两个模型都获得了较高的 ROC AUC 分数:提前一个月预测的 ROC AUC 得分为 0.948,提前十二个月预测的 ROC AUC 得分为 0.617,与传统方法相比,分别接近完美 ROC AUC 的 54% 和 16%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
期刊最新文献
A coordination attention residual U-Net model for enhanced short and mid-term sea surface temperature prediction An R package to partition observation data used for model development and evaluation to achieve model generalizability Dynamics of real-time forecasting failure and recovery due to data gaps: A study using EnKF-based assimilation with the Lorenz model Identification of pedestrian submerged parts in urban flooding based on images and deep learning A conceptual data modeling framework with four levels of abstraction for environmental information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1