Alexander Marusov , Vsevolod Grabar , Yury Maximov , Nazar Sotiriadi , Alexander Bulkin , Alexey Zaytsev
{"title":"Long-term drought prediction using deep neural networks based on geospatial weather data","authors":"Alexander Marusov , Vsevolod Grabar , Yury Maximov , Nazar Sotiriadi , Alexander Bulkin , Alexey Zaytsev","doi":"10.1016/j.envsoft.2024.106127","DOIUrl":null,"url":null,"abstract":"<div><p>The problem of high-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance. Yet, it is still unsolved with reasonable accuracy due to data complexity and aridity stochasticity. We tackle drought data by introducing an end-to-end approach that adopts a spatio-temporal neural network model with accessible open monthly climate data as the input. Our systematic research employs diverse proposed models and five distinct environmental regions as a testbed to evaluate the efficacy of the Palmer Drought Severity Index (PDSI) prediction. Key aggregated findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts. At the same time, the Convolutional LSTM excels in longer-term forecasting. Both models achieved high ROC AUC scores: 0.948 for one month ahead and 0.617 for twelve months ahead forecasts, becoming closer to perfect ROC-AUC by 54% and 16%, respectively, c.t. classic approaches.</p></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815224001889","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The problem of high-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance. Yet, it is still unsolved with reasonable accuracy due to data complexity and aridity stochasticity. We tackle drought data by introducing an end-to-end approach that adopts a spatio-temporal neural network model with accessible open monthly climate data as the input. Our systematic research employs diverse proposed models and five distinct environmental regions as a testbed to evaluate the efficacy of the Palmer Drought Severity Index (PDSI) prediction. Key aggregated findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts. At the same time, the Convolutional LSTM excels in longer-term forecasting. Both models achieved high ROC AUC scores: 0.948 for one month ahead and 0.617 for twelve months ahead forecasts, becoming closer to perfect ROC-AUC by 54% and 16%, respectively, c.t. classic approaches.
期刊介绍:
Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.