Quadrature based innovative techniques concerning nonlinear equations having unknown multiplicity

Farooq Ahmed Shah , Muhammad Waseem
{"title":"Quadrature based innovative techniques concerning nonlinear equations having unknown multiplicity","authors":"Farooq Ahmed Shah ,&nbsp;Muhammad Waseem","doi":"10.1016/j.exco.2024.100150","DOIUrl":null,"url":null,"abstract":"<div><p>Solution of nonlinear equations is one of the most frequently encountered issue in engineering and applied sciences. Most of the intricateed engineering problems are modeled in the frame work of nonlinear equation <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mn>0</mn><mo>.</mo></mrow></math></span> The significance of iterative algorithms executed by computers in resolving such functions is of paramount importance and undeniable in contemporary times. If we study the simple roots and the roots having multiplicity greater of any nonlinear equations we come to the point that finding the roots of nonlinear equations having multiplicity greater than one is not trivialvia classical iterative methods. Instability or slow convergence rate is faced by these methods, and also sometimes these methods diverge. In this article, we give some innovative and robust iterative techniques for obtaining the approximate solution of nonlinear equations having multiplicity <span><math><mrow><mi>m</mi><mo>&gt;</mo><mn>1</mn></mrow></math></span>. Quadrature formulas are implemented to obtain iterative techniques for finding roots of nonlinear equations having unknown multiplicity. The derived methods are the variants of modified Newton method with high order of convergence and better accuracy. The convergence criteria of the new techniques are studied by using Taylor series method. Some examples are tested for the sack of implementations of these techniques. Numerical and graphical comparison shows the performance and efficiency of these new techniques.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"6 ","pages":"Article 100150"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666657X24000168/pdfft?md5=1401656be5f763d7bc65918548e7c152&pid=1-s2.0-S2666657X24000168-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Examples and Counterexamples","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666657X24000168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Solution of nonlinear equations is one of the most frequently encountered issue in engineering and applied sciences. Most of the intricateed engineering problems are modeled in the frame work of nonlinear equation f(x)=0. The significance of iterative algorithms executed by computers in resolving such functions is of paramount importance and undeniable in contemporary times. If we study the simple roots and the roots having multiplicity greater of any nonlinear equations we come to the point that finding the roots of nonlinear equations having multiplicity greater than one is not trivialvia classical iterative methods. Instability or slow convergence rate is faced by these methods, and also sometimes these methods diverge. In this article, we give some innovative and robust iterative techniques for obtaining the approximate solution of nonlinear equations having multiplicity m>1. Quadrature formulas are implemented to obtain iterative techniques for finding roots of nonlinear equations having unknown multiplicity. The derived methods are the variants of modified Newton method with high order of convergence and better accuracy. The convergence criteria of the new techniques are studied by using Taylor series method. Some examples are tested for the sack of implementations of these techniques. Numerical and graphical comparison shows the performance and efficiency of these new techniques.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于正交的有关未知倍数非线性方程的创新技术
非线性方程的求解是工程和应用科学中最常遇到的问题之一。大多数错综复杂的工程问题都是在非线性方程 f(x)=0 的框架内建模的。在当代,计算机执行的迭代算法在求解此类函数方面的重要性是毋庸置疑的。如果我们研究任何非线性方程的简单根和乘数大于 1 的根,我们就会发现,通过经典迭代法找到乘数大于 1 的非线性方程的根并非易事。这些方法会面临不稳定性或收敛速度慢的问题,有时还会出现发散现象。在本文中,我们给出了一些创新而稳健的迭代技术,用于求得乘数为 m>1 的非线性方程的近似解。通过实施正交公式,我们获得了求未知乘数非线性方程根的迭代技术。推导出的方法是修正牛顿法的变种,具有高收敛阶数和更好的精度。利用泰勒级数法研究了新技术的收敛标准。通过一些实例对这些技术的实施进行了测试。数值和图形比较显示了这些新技术的性能和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
期刊最新文献
Automation of image processing through ML algorithms of GRASS GIS using embedded Scikit-Learn library of Python Counterexamples for your calculus course Hölder’s inequality for shifted quantum integral operator Solving change of basis from Bernstein to Chebyshev polynomials Asymptotic behavior of the empirical checkerboard copula process for binary data: An educational presentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1