Mehrdad Zarafshar , Olivier Besnard , Auriane Thomas , Bastien Perrot , Gaëlle Vincent , Stéphane Bazot
{"title":"Unlocking the promising potential: Trichoderma TrB (CNCM strain I-5327) in Golf course management","authors":"Mehrdad Zarafshar , Olivier Besnard , Auriane Thomas , Bastien Perrot , Gaëlle Vincent , Stéphane Bazot","doi":"10.1016/j.pedobi.2024.150972","DOIUrl":null,"url":null,"abstract":"<div><p>In the pursuit of sustainable turfgrass management for golf courses, a series of experiments was conducted to assess the potential of <em>Trichoderma</em> TrB (CNCM strain I-5327) as a natural solution. The research encompassed greenhouse and field trials across two golf courses. The comprehensive pot experiment investigated <em>Trichoderma</em> effectiveness, including native (TrB) and commercial strains, with and without organic amino acids, for turfgrass and soil health. The study followed a two-stage process, stimulating beneficial microorganisms with TrB and introducing <em>Fusarium</em> for biocontrol. Preliminary field trial on one golf course utilized a randomized block design to examine the effects of TrB and Trianum with amino acids, and fungicide on soil microbial community. A second field trial analyzed soil metabolic profiles after applying TrB, Trianum, and fungicide on another golf course. The greenhouse experiments demonstrated promising outcomes from the application of TrB, especially when combined with organic amino acids. This combination not only promoted plant growth and improved soil health but also effectively prevented the activation of <em>Fusarium</em>. In both field trials, it was observed that the introduction of TrB into the soil led to an increase in the population of soil fungi and bacteria and stimulated their activity. Our field data revealed that enriching the soil with TrB had a positive effect on soil microbial communities, while the application of fungicide resulted in a decrease in microbial activities. In summary, our research underscores <em>Trichoderma</em>'s potential (TrB) in sustainable golf course management. These findings highlight TrB as a promising natural solution for improving turfgrass health and soil quality in sustainable management of golf course.</p></div>","PeriodicalId":49711,"journal":{"name":"Pedobiologia","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0031405624034930/pdfft?md5=9e9117e2943fb5a1dd21938969243488&pid=1-s2.0-S0031405624034930-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pedobiologia","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031405624034930","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In the pursuit of sustainable turfgrass management for golf courses, a series of experiments was conducted to assess the potential of Trichoderma TrB (CNCM strain I-5327) as a natural solution. The research encompassed greenhouse and field trials across two golf courses. The comprehensive pot experiment investigated Trichoderma effectiveness, including native (TrB) and commercial strains, with and without organic amino acids, for turfgrass and soil health. The study followed a two-stage process, stimulating beneficial microorganisms with TrB and introducing Fusarium for biocontrol. Preliminary field trial on one golf course utilized a randomized block design to examine the effects of TrB and Trianum with amino acids, and fungicide on soil microbial community. A second field trial analyzed soil metabolic profiles after applying TrB, Trianum, and fungicide on another golf course. The greenhouse experiments demonstrated promising outcomes from the application of TrB, especially when combined with organic amino acids. This combination not only promoted plant growth and improved soil health but also effectively prevented the activation of Fusarium. In both field trials, it was observed that the introduction of TrB into the soil led to an increase in the population of soil fungi and bacteria and stimulated their activity. Our field data revealed that enriching the soil with TrB had a positive effect on soil microbial communities, while the application of fungicide resulted in a decrease in microbial activities. In summary, our research underscores Trichoderma's potential (TrB) in sustainable golf course management. These findings highlight TrB as a promising natural solution for improving turfgrass health and soil quality in sustainable management of golf course.
期刊介绍:
Pedobiologia publishes peer reviewed articles describing original work in the field of soil ecology, which includes the study of soil organisms and their interactions with factors in their biotic and abiotic environments.
Analysis of biological structures, interactions, functions, and processes in soil is fundamental for understanding the dynamical nature of terrestrial ecosystems, a prerequisite for appropriate soil management. The scope of this journal consists of fundamental and applied aspects of soil ecology; key focal points include interactions among organisms in soil, organismal controls on soil processes, causes and consequences of soil biodiversity, and aboveground-belowground interactions.
We publish:
original research that tests clearly defined hypotheses addressing topics of current interest in soil ecology (including studies demonstrating nonsignificant effects);
descriptions of novel methodological approaches, or evaluations of current approaches, that address a clear need in soil ecology research;
innovative syntheses of the soil ecology literature, including metaanalyses, topical in depth reviews and short opinion/perspective pieces, and descriptions of original conceptual frameworks; and
short notes reporting novel observations of ecological significance.