The gravitational lensing by rotating black holes in loop quantum gravity

IF 2.5 3区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS Nuclear Physics B Pub Date : 2024-07-01 DOI:10.1016/j.nuclphysb.2024.116612
Yuhao Dong
{"title":"The gravitational lensing by rotating black holes in loop quantum gravity","authors":"Yuhao Dong","doi":"10.1016/j.nuclphysb.2024.116612","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we explore gravitational lensing effects associated with rotating black holes within the framework of loop quantum gravity. Utilizing the Gauss-Bonnet theorem as extended by Ono et al., we compute the light deflection angle in the weak field limit for a lens that is finitely distanced from both the source and the observer. Our findings indicate that the weak deflection angle for rotating black holes in LQG is smaller than that observed for the classical Kerr black holes, albeit with minimal deviations. In the strong field limit, we determine the photon sphere radius, the light deflection angle, and lensing observables, including the image position <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span>, angular separation <em>s</em>, magnification <span><math><msub><mrow><mi>r</mi></mrow><mrow><mtext>mag</mtext></mrow></msub></math></span>, and temporal delays among various relativistic images. By considering supermassive black holes, such as Sgr A* and M87*, within the LQG framework, we calculate these observables and investigate the influence of the quantum parameter <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>λ</mi></mrow></msub></math></span> on them, compared with the Kerr black hole outcomes. Our comparative analysis reveals that the image position <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span> and separation <em>s</em> for Sgr A* consistently exceed those for M87*, whereas M87* exhibits considerably greater time delays than Sgr A*. These distinctions could be important in differentiating between rotating black holes in LQG and classical Kerr black holes in future astronomical observations.</p></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0550321324001780/pdfft?md5=ac554d83b2bf1b75b0a038387a9e6554&pid=1-s2.0-S0550321324001780-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0550321324001780","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we explore gravitational lensing effects associated with rotating black holes within the framework of loop quantum gravity. Utilizing the Gauss-Bonnet theorem as extended by Ono et al., we compute the light deflection angle in the weak field limit for a lens that is finitely distanced from both the source and the observer. Our findings indicate that the weak deflection angle for rotating black holes in LQG is smaller than that observed for the classical Kerr black holes, albeit with minimal deviations. In the strong field limit, we determine the photon sphere radius, the light deflection angle, and lensing observables, including the image position θ, angular separation s, magnification rmag, and temporal delays among various relativistic images. By considering supermassive black holes, such as Sgr A* and M87*, within the LQG framework, we calculate these observables and investigate the influence of the quantum parameter Aλ on them, compared with the Kerr black hole outcomes. Our comparative analysis reveals that the image position θ and separation s for Sgr A* consistently exceed those for M87*, whereas M87* exhibits considerably greater time delays than Sgr A*. These distinctions could be important in differentiating between rotating black holes in LQG and classical Kerr black holes in future astronomical observations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
环量子引力中旋转黑洞的引力透镜效应
本文在环量子引力框架内探讨了与旋转黑洞相关的引力透镜效应。利用由 Ono 等人扩展的高斯-波内特定理,我们计算了与光源和观察者都有有限距离的透镜在弱场极限下的光偏转角。我们的研究结果表明,LQG 中旋转黑洞的弱偏转角要小于经典克尔黑洞,尽管偏差很小。在强场极限中,我们确定了光子球半径、光偏转角和透镜观测值,包括各种相对论图像之间的图像位置θ∞、角间隔s、放大率rmag和时间延迟。通过在 LQG 框架内考虑超大质量黑洞(如 Sgr A* 和 M87*),我们计算了这些观测值,并研究了量子参数 Aλ 与克尔黑洞结果相比对这些观测值的影响。我们的对比分析表明,Sgr A*的图像位置θ∞和分离度s一直超过M87*,而M87*则比Sgr A*表现出更大的时间延迟。在未来的天文观测中,这些区别对于区分LQG中的旋转黑洞和经典克尔黑洞可能非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nuclear Physics B
Nuclear Physics B 物理-物理:粒子与场物理
CiteScore
5.50
自引率
7.10%
发文量
302
审稿时长
1 months
期刊介绍: Nuclear Physics B focuses on the domain of high energy physics, quantum field theory, statistical systems, and mathematical physics, and includes four main sections: high energy physics - phenomenology, high energy physics - theory, high energy physics - experiment, and quantum field theory, statistical systems, and mathematical physics. The emphasis is on original research papers (Frontiers Articles or Full Length Articles), but Review Articles are also welcome.
期刊最新文献
Dynamics of spin-0 (particles-antiparticles) in Bonnor-Melvin cosmological space-time using the Generalized Feshbach-Villars transformation Dunkl algebra and vacuum pair creation: Exact analytical results via Bogoliubov method Charged wormhole solutions in 4D Einstein-Gauss-Bonnet gravity Linear equations with infinitely many derivatives and explicit solutions to zeta nonlocal equations Is nature natural?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1