Colin W. Combe, Lars Kolbowski, Lutz Fischer, Ville Koskinen, Joshua Klein, Alexander Leitner, Andrew R. Jones, Juan Antonio Vizcaíno, Juri Rappsilber
{"title":"mzIdentML 1.3.0 – Essential progress on the support of crosslinking and other identifications based on multiple spectra","authors":"Colin W. Combe, Lars Kolbowski, Lutz Fischer, Ville Koskinen, Joshua Klein, Alexander Leitner, Andrew R. Jones, Juan Antonio Vizcaíno, Juri Rappsilber","doi":"10.1002/pmic.202300385","DOIUrl":null,"url":null,"abstract":"<p>The mzIdentML data format, originally developed by the Proteomics Standards Initiative in 2011, is the open XML data standard for peptide and protein identification results coming from mass spectrometry. We present mzIdentML version 1.3.0, which introduces new functionality and support for additional use cases. First of all, a new mechanism for encoding identifications based on multiple spectra has been introduced. Furthermore, the main mzIdentML specification document can now be supplemented by extension documents which provide further guidance for encoding specific use cases for different proteomics subfields. One extension document has been added, covering additional use cases for the encoding of crosslinked peptide identifications. The ability to add extension documents facilitates keeping the mzIdentML standard up to date with advances in the proteomics field, without having to change the main specification document. The crosslinking extension document provides further explanation of the crosslinking use cases already supported in mzIdentML version 1.2.0, and provides support for encoding additional scenarios that are critical to reflect developments in the crosslinking field and facilitate its integration in structural biology. These are: (i) support for cleavable crosslinkers, (ii) support for internally linked peptides, (iii) support for noncovalently associated peptides, and (iv) improved support for encoding scores and the corresponding thresholds.</p>","PeriodicalId":224,"journal":{"name":"Proteomics","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pmic.202300385","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteomics","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pmic.202300385","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The mzIdentML data format, originally developed by the Proteomics Standards Initiative in 2011, is the open XML data standard for peptide and protein identification results coming from mass spectrometry. We present mzIdentML version 1.3.0, which introduces new functionality and support for additional use cases. First of all, a new mechanism for encoding identifications based on multiple spectra has been introduced. Furthermore, the main mzIdentML specification document can now be supplemented by extension documents which provide further guidance for encoding specific use cases for different proteomics subfields. One extension document has been added, covering additional use cases for the encoding of crosslinked peptide identifications. The ability to add extension documents facilitates keeping the mzIdentML standard up to date with advances in the proteomics field, without having to change the main specification document. The crosslinking extension document provides further explanation of the crosslinking use cases already supported in mzIdentML version 1.2.0, and provides support for encoding additional scenarios that are critical to reflect developments in the crosslinking field and facilitate its integration in structural biology. These are: (i) support for cleavable crosslinkers, (ii) support for internally linked peptides, (iii) support for noncovalently associated peptides, and (iv) improved support for encoding scores and the corresponding thresholds.
期刊介绍:
PROTEOMICS is the premier international source for information on all aspects of applications and technologies, including software, in proteomics and other "omics". The journal includes but is not limited to proteomics, genomics, transcriptomics, metabolomics and lipidomics, and systems biology approaches. Papers describing novel applications of proteomics and integration of multi-omics data and approaches are especially welcome.