Transcription factor NFYA inhibits ferroptosis in lung adenocarcinoma cells by regulating PEBP1

IF 1.5 4区 医学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis Pub Date : 2024-07-01 DOI:10.1016/j.mrfmmm.2024.111873
Feng Chen, Tingting Xu, Ni Jin, Digeng Li, Yanfu Ying, Chen Wang
{"title":"Transcription factor NFYA inhibits ferroptosis in lung adenocarcinoma cells by regulating PEBP1","authors":"Feng Chen,&nbsp;Tingting Xu,&nbsp;Ni Jin,&nbsp;Digeng Li,&nbsp;Yanfu Ying,&nbsp;Chen Wang","doi":"10.1016/j.mrfmmm.2024.111873","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Ferroptosis is an iron-dependent programmed cell death mediated by lipid peroxidation. The purpose was to explore the molecular mechanism by which phosphatidylethanolamine-binding protein 1 (PEBP1) regulates ferroptosis in lung adenocarcinoma (LUAD), hoping to identify novel therapeutic targets for LUAD.</p></div><div><h3>Methods</h3><p>The expression, enrichment pathways and upstream transcription factors of PEBP1 were analyzed using bioinformatics tools. Dual-luciferase reporter assay and chromatin immunoprecipitation (ChIP) experiments were conducted to validate the interaction and binding relationship between PEBP1 and the upstream transcription factor nuclear transcription factor Y subunit α (NFYA). Quantitative reverse transcription PCR (qRT-PCR) was conducted to measure the expression levels of PEBP1 and NFYA mRNA in LUAD cells. Cell viability was detected by cell counting kit-8 assay. In addition, levels of malondialdehyde (MDA), Fe<sup>2+</sup>, and lipid reactive oxygen species (ROS) were assessed to evaluate ferroptosis levels in LUAD cells.</p></div><div><h3>Results</h3><p>PEBP1 was downregulated and significantly enriched in the ferroptosis signaling pathway in LUAD. Overexpression of PEBP1 suppressed cell viability remarkably, while levels of MDA, Fe<sup>2+</sup>, and lipid ROS were increased. Conversely, knockdown of PEBP1 produced the opposite effects. The upstream transcription factor NFYA, predicted to be involved in the regulation of PEBP1, was also upregulated in LUAD. Dual-luciferase reporter assay, ChIP, and molecular experiments revealed that NFYA transcriptionally suppressed the expression of PEBP1, and overexpression of NFYA could reverse the effects caused by PEBP1 overexpression.</p></div><div><h3>Conclusion</h3><p>PEBP1 regulated ferroptosis in LUAD, and the transcription factor NFYA inhibited ferroptosis in LUAD cells by transcriptionally downregulating PEBP1 expression.</p></div>","PeriodicalId":49790,"journal":{"name":"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis","volume":"829 ","pages":"Article 111873"},"PeriodicalIF":1.5000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002751072400023X","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Ferroptosis is an iron-dependent programmed cell death mediated by lipid peroxidation. The purpose was to explore the molecular mechanism by which phosphatidylethanolamine-binding protein 1 (PEBP1) regulates ferroptosis in lung adenocarcinoma (LUAD), hoping to identify novel therapeutic targets for LUAD.

Methods

The expression, enrichment pathways and upstream transcription factors of PEBP1 were analyzed using bioinformatics tools. Dual-luciferase reporter assay and chromatin immunoprecipitation (ChIP) experiments were conducted to validate the interaction and binding relationship between PEBP1 and the upstream transcription factor nuclear transcription factor Y subunit α (NFYA). Quantitative reverse transcription PCR (qRT-PCR) was conducted to measure the expression levels of PEBP1 and NFYA mRNA in LUAD cells. Cell viability was detected by cell counting kit-8 assay. In addition, levels of malondialdehyde (MDA), Fe2+, and lipid reactive oxygen species (ROS) were assessed to evaluate ferroptosis levels in LUAD cells.

Results

PEBP1 was downregulated and significantly enriched in the ferroptosis signaling pathway in LUAD. Overexpression of PEBP1 suppressed cell viability remarkably, while levels of MDA, Fe2+, and lipid ROS were increased. Conversely, knockdown of PEBP1 produced the opposite effects. The upstream transcription factor NFYA, predicted to be involved in the regulation of PEBP1, was also upregulated in LUAD. Dual-luciferase reporter assay, ChIP, and molecular experiments revealed that NFYA transcriptionally suppressed the expression of PEBP1, and overexpression of NFYA could reverse the effects caused by PEBP1 overexpression.

Conclusion

PEBP1 regulated ferroptosis in LUAD, and the transcription factor NFYA inhibited ferroptosis in LUAD cells by transcriptionally downregulating PEBP1 expression.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
转录因子 NFYA 通过调控 PEBP1 抑制肺腺癌细胞的铁突变。
背景:铁变性是一种由脂质过氧化介导的铁依赖性程序性细胞死亡。本研究的目的是探讨磷脂酰乙醇胺结合蛋白1(PEBP1)调控肺腺癌(LUAD)铁凋亡的分子机制,希望能找到治疗LUAD的新靶点:方法:利用生物信息学工具分析了PEBP1的表达、富集途径和上游转录因子。双荧光素酶报告实验和染色质免疫沉淀(ChIP)实验验证了PEBP1与上游转录因子核转录因子Y亚基α(NFYA)之间的相互作用和结合关系。定量反转录 PCR(qRT-PCR)测定了 PEBP1 和 NFYA mRNA 在 LUAD 细胞中的表达水平。细胞活力通过细胞计数试剂盒-8检测。此外,还评估了丙二醛(MDA)、Fe2+和脂质活性氧(ROS)的水平,以评价 LUAD 细胞的铁变态反应水平:结果:在LUAD细胞中,PEBP1被下调,并在铁变态反应信号通路中显著富集。结果:在 LUAD 细胞中,PEBP1 被下调,并在铁氧化信号通路中明显富集。过表达 PEBP1 会明显抑制细胞活力,同时 MDA、Fe2+ 和脂质 ROS 水平升高。相反,敲除 PEBP1 则会产生相反的效果。上游转录因子 NFYA 被认为参与了 PEBP1 的调控,在 LUAD 中也被上调。双荧光素酶报告实验、ChIP和分子实验显示,NFYA转录抑制了PEBP1的表达,而NFYA的过表达可以逆转PEBP1过表达造成的影响:结论:PEBP1调控LUAD细胞的铁突变,转录因子NFYA通过转录下调PEBP1的表达抑制LUAD细胞的铁突变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.90
自引率
0.00%
发文量
24
审稿时长
51 days
期刊介绍: Mutation Research (MR) provides a platform for publishing all aspects of DNA mutations and epimutations, from basic evolutionary aspects to translational applications in genetic and epigenetic diagnostics and therapy. Mutations are defined as all possible alterations in DNA sequence and sequence organization, from point mutations to genome structural variation, chromosomal aberrations and aneuploidy. Epimutations are defined as alterations in the epigenome, i.e., changes in DNA methylation, histone modification and small regulatory RNAs. MR publishes articles in the following areas: Of special interest are basic mechanisms through which DNA damage and mutations impact development and differentiation, stem cell biology and cell fate in general, including various forms of cell death and cellular senescence. The study of genome instability in human molecular epidemiology and in relation to complex phenotypes, such as human disease, is considered a growing area of importance. Mechanisms of (epi)mutation induction, for example, during DNA repair, replication or recombination; novel methods of (epi)mutation detection, with a focus on ultra-high-throughput sequencing. Landscape of somatic mutations and epimutations in cancer and aging. Role of de novo mutations in human disease and aging; mutations in population genomics. Interactions between mutations and epimutations. The role of epimutations in chromatin structure and function. Mitochondrial DNA mutations and their consequences in terms of human disease and aging. Novel ways to generate mutations and epimutations in cell lines and animal models.
期刊最新文献
High expression of SLC34A2 contributes to chemoresistance of non-small cell lung cancer against gefitinib: The critical role of miR-124–3p The mutagenic properties of formaldehyde and acetaldehyde: Reflections on half a century of progress ALDH2 mutations and defense against genotoxic aldehydes in cancer and inherited bone marrow failure syndromes AQP5 promotes epithelial-mesenchymal transition and tumor growth through activating the Wnt/β-catenin pathway in triple-negative breast cancer MicroRNA-138 promotes the progression of multiple myeloma through targeting paired PAX5
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1