F-coordinated single-atom Ru species: efficient and durable catalysts for photo-thermal synergistic catalytic CO2 hydrogenation to methane†

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Journal of Materials Chemistry A Pub Date : 2024-07-13 DOI:10.1039/D4TA02984D
Yunxiang Tang, Hao Wang, Chan Guo, Lige Wang, Tingting Zhao, Zhengyi Yang, Shikang Xiao, Jiurong Liu, Yanyan Jiang, Yufei Zhao, Xiao-Dong Wen and Fenglong Wang
{"title":"F-coordinated single-atom Ru species: efficient and durable catalysts for photo-thermal synergistic catalytic CO2 hydrogenation to methane†","authors":"Yunxiang Tang, Hao Wang, Chan Guo, Lige Wang, Tingting Zhao, Zhengyi Yang, Shikang Xiao, Jiurong Liu, Yanyan Jiang, Yufei Zhao, Xiao-Dong Wen and Fenglong Wang","doi":"10.1039/D4TA02984D","DOIUrl":null,"url":null,"abstract":"<p >Elucidating the correlation between coordination structures and catalytic performances of single-atom active sites is imperative for the precise design of highly efficient catalysts; however, the feasible regulation of coordination environments in single-atom catalysts presents a formidable challenge. Herein, we fabricate single-atom Ru-based catalysts with Ru–F<small><sub>4</sub></small> and Ru–O<small><sub>4</sub></small> configurations (named Ru–F<small><sub>4</sub></small> SAs/PA and Ru–O<small><sub>4</sub></small> SAs/PA, respectively), demonstrating that fine-tuning of the coordination structure of Ru sites can significantly enhance performances for CO<small><sub>2</sub></small> hydrogenation to methane under mild conditions in a photo-thermal synergistic catalytic process. Comparative studies reveal that Ru–F<small><sub>4</sub></small> SAs/PA outperformed Ru–O<small><sub>4</sub></small> SAs/PA counterparts, giving superior CO<small><sub>2</sub></small> methanation performances with a CH<small><sub>4</sub></small> production rate of 47.4 mmol g<small><sub>cat</sub></small><small><sup>−1</sup></small> h<small><sup>−1</sup></small> and CH<small><sub>4</sub></small> selectivity of 93.8% at 200 °C in the presence of light irradiation (200–1100 nm, 1.9 W cm<small><sup>−2</sup></small>) under atmospheric pressure. Theoretical investigations unravel that the transition from Ru–O<small><sub>4</sub></small> to Ru–F<small><sub>4</sub></small> coordination environments optimizes the electronic states, thereby enhancing the adsorption of reactants and intermediates. Moreover, the optimized electronic structure promotes the production and transformation of key intermediate species, lowers the energy barrier for CO<small><sub>2</sub></small> conversion, and thus elevates the catalytic activity. This comprehensive study not only clarifies the relationship between the coordination structures of active sites and catalytic performance at the atomic-level but also offers a novel paradigm for the design of efficient CO<small><sub>2</sub></small> conversion catalysts.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 32","pages":" 20958-20966"},"PeriodicalIF":10.7000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ta/d4ta02984d","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Elucidating the correlation between coordination structures and catalytic performances of single-atom active sites is imperative for the precise design of highly efficient catalysts; however, the feasible regulation of coordination environments in single-atom catalysts presents a formidable challenge. Herein, we fabricate single-atom Ru-based catalysts with Ru–F4 and Ru–O4 configurations (named Ru–F4 SAs/PA and Ru–O4 SAs/PA, respectively), demonstrating that fine-tuning of the coordination structure of Ru sites can significantly enhance performances for CO2 hydrogenation to methane under mild conditions in a photo-thermal synergistic catalytic process. Comparative studies reveal that Ru–F4 SAs/PA outperformed Ru–O4 SAs/PA counterparts, giving superior CO2 methanation performances with a CH4 production rate of 47.4 mmol gcat−1 h−1 and CH4 selectivity of 93.8% at 200 °C in the presence of light irradiation (200–1100 nm, 1.9 W cm−2) under atmospheric pressure. Theoretical investigations unravel that the transition from Ru–O4 to Ru–F4 coordination environments optimizes the electronic states, thereby enhancing the adsorption of reactants and intermediates. Moreover, the optimized electronic structure promotes the production and transformation of key intermediate species, lowers the energy barrier for CO2 conversion, and thus elevates the catalytic activity. This comprehensive study not only clarifies the relationship between the coordination structures of active sites and catalytic performance at the atomic-level but also offers a novel paradigm for the design of efficient CO2 conversion catalysts.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
F 配位单原子 Ru 物种:光热协同催化 CO2 加氢制甲烷的高效持久催化剂
阐明单原子活性位点配位结构与催化性能之间的相关性是精确设计高效催化剂的当务之急;然而,如何对单原子催化剂的配位环境进行可行的调控是一项艰巨的挑战。在此,我们制备了具有 Ru-F4 和 Ru-O4 构型的单原子 Ru 基催化剂(分别命名为 Ru-F4 SAs/PA 和 Ru-O4 SAs/PA),展示了微调 Ru 位点的配位结构可显著提高光热协同催化过程中温和条件下 CO2 加氢制甲烷的性能。对比研究发现,Ru-F4 SAs/PA 的性能优于 Ru-O4 SAs/PA,在常压下,光照射(200-1100 纳米,1.9 瓦 cm-2)条件下,Ru-F4 SAs/PA 在 200 ℃ 下的 CO2 甲烷化性能更优越,CH4 产率为 47.4 mmol gcat-1 h-1,CH4 选择性为 93.8%。理论研究发现,从 Ru-O4 配位环境过渡到 Ru-F4 配位环境优化了电子状态,从而增强了对反应物和中间产物的吸附。此外,优化的电子结构促进了关键中间产物的生成和转化,降低了二氧化碳转化的能量障碍,从而提高了催化活性。这项全面的研究不仅从原子层面阐明了活性位点配位结构与催化性能之间的关系,还为设计高效的二氧化碳转化催化剂提供了一种新的范式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
期刊最新文献
Yolk-shell structured microsphere consisting of CoO/CoP hetero-interfaced nanocomposite as highly active hydrogen evolution reaction electrocatalysts for AEM electrolyzer stacks Two-step strategy improves the wide-temperature-range thermoelectric performance of Mg3+xBi1.29Sb0.7Te0.01 Functional Nickel Iron Sulphide/Hydroxide catalysts for hydrazine oxidation and Energy Saving Hydrogen Production Ultra-high ICE and long cycle stability sodium-ion battery anode: hybrid nanostructure of dominant pyridine N-doped sisal fiber derived carbon-MoS2 The synergistic effect of Ni–NiMo4N5 heterointerface construction and Fe-doping enables active and durable alkaline water splitting at industrial current density
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1