Aman D Moudgil, Anil K Nehra, Ankur Sharma, Santosh Patel, Sukhdeep Vohra
{"title":"First Insight into the Phylogenetic Diversity of Bovicola caprae Infesting Goats of Different Agro-climatic Locations in India.","authors":"Aman D Moudgil, Anil K Nehra, Ankur Sharma, Santosh Patel, Sukhdeep Vohra","doi":"10.1007/s10528-024-10886-3","DOIUrl":null,"url":null,"abstract":"<p><p>Bovicola caprae is an important obligate ectoparasite of goats worldwide including India. The present study aimed at the molecular confirmation, phylogenetics and population structure analyses of B. caprae infesting goats of three different agro-climatic locations in India, by targeting the mitochondrial cytochrome C oxidase subunit 1 (cox1) genetic marker. The phylogenetic tree exhibited the presence of two different lineages of B. caprae. The sequences generated herein clustered in lineage 2 along with the GenBank™ archived sequences from China and Iran. The sequences generated herein also showed the circulation of sub-lineages of B. caprae in India based on the analysis of pairwise genetic distances between sequences and median-joining haplotype network. The population structure analyses revealed low nucleotide (0.00353 ± 0.00291 and 0.02694 ± 0.00363) and high haplotype (0.667 ± 0.314 and 0.618 ± 0.104) diversities for the present study isolates as well as for the complete dataset, respectively, which evinced a recent demographic expansion. High genetic differentiation (F<sub>ST</sub> value = 0.97826) and low gene flow (N<sub>m</sub> = 0.00556) were also recorded in the different lineages/populations. In conclusion, the present study addressed the research gap and provided the first insight into the phylogenetics of the goat louse B. caprae and highlighted the circulation of sub-lineages of the ectoparasite in India.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10528-024-10886-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bovicola caprae is an important obligate ectoparasite of goats worldwide including India. The present study aimed at the molecular confirmation, phylogenetics and population structure analyses of B. caprae infesting goats of three different agro-climatic locations in India, by targeting the mitochondrial cytochrome C oxidase subunit 1 (cox1) genetic marker. The phylogenetic tree exhibited the presence of two different lineages of B. caprae. The sequences generated herein clustered in lineage 2 along with the GenBank™ archived sequences from China and Iran. The sequences generated herein also showed the circulation of sub-lineages of B. caprae in India based on the analysis of pairwise genetic distances between sequences and median-joining haplotype network. The population structure analyses revealed low nucleotide (0.00353 ± 0.00291 and 0.02694 ± 0.00363) and high haplotype (0.667 ± 0.314 and 0.618 ± 0.104) diversities for the present study isolates as well as for the complete dataset, respectively, which evinced a recent demographic expansion. High genetic differentiation (FST value = 0.97826) and low gene flow (Nm = 0.00556) were also recorded in the different lineages/populations. In conclusion, the present study addressed the research gap and provided the first insight into the phylogenetics of the goat louse B. caprae and highlighted the circulation of sub-lineages of the ectoparasite in India.
期刊介绍:
Biochemical Genetics welcomes original manuscripts that address and test clear scientific hypotheses, are directed to a broad scientific audience, and clearly contribute to the advancement of the field through the use of sound sampling or experimental design, reliable analytical methodologies and robust statistical analyses.
Although studies focusing on particular regions and target organisms are welcome, it is not the journal’s goal to publish essentially descriptive studies that provide results with narrow applicability, or are based on very small samples or pseudoreplication.
Rather, Biochemical Genetics welcomes review articles that go beyond summarizing previous publications and create added value through the systematic analysis and critique of the current state of knowledge or by conducting meta-analyses.
Methodological articles are also within the scope of Biological Genetics, particularly when new laboratory techniques or computational approaches are fully described and thoroughly compared with the existing benchmark methods.
Biochemical Genetics welcomes articles on the following topics: Genomics; Proteomics; Population genetics; Phylogenetics; Metagenomics; Microbial genetics; Genetics and evolution of wild and cultivated plants; Animal genetics and evolution; Human genetics and evolution; Genetic disorders; Genetic markers of diseases; Gene technology and therapy; Experimental and analytical methods; Statistical and computational methods.