Artificial intelligence for automatic detection and segmentation of nasal polyposis: a pilot study.

IF 1.9 3区 医学 Q2 OTORHINOLARYNGOLOGY European Archives of Oto-Rhino-Laryngology Pub Date : 2024-11-01 Epub Date: 2024-07-13 DOI:10.1007/s00405-024-08809-4
Vittorio Rampinelli, Alberto Paderno, Carlo Conti, Gabriele Testa, Claudia Lodovica Modesti, Edoardo Agosti, Isabelle Dohin, Tommaso Saccardo, Alessandro Vinciguerra, Marco Ferrari, Alberto Schreiber, Davide Mattavelli, Piero Nicolai, Chris Holsinger, Cesare Piazza
{"title":"Artificial intelligence for automatic detection and segmentation of nasal polyposis: a pilot study.","authors":"Vittorio Rampinelli, Alberto Paderno, Carlo Conti, Gabriele Testa, Claudia Lodovica Modesti, Edoardo Agosti, Isabelle Dohin, Tommaso Saccardo, Alessandro Vinciguerra, Marco Ferrari, Alberto Schreiber, Davide Mattavelli, Piero Nicolai, Chris Holsinger, Cesare Piazza","doi":"10.1007/s00405-024-08809-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Accurate diagnosis and quantification of polyps and symptoms are pivotal for planning the therapeutic strategy of Chronic rhinosinusitis with nasal polyposis (CRSwNP). This pilot study aimed to develop an artificial intelligence (AI)-based image analysis system capable of segmenting nasal polyps from nasal endoscopy videos.</p><p><strong>Methods: </strong>Recorded nasal videoendoscopies from 52 patients diagnosed with CRSwNP between 2019 and 2022 were retrospectively analyzed. Images extracted were manually segmented on the web application Roboflow. A dataset of 342 images was generated and divided into training (80%), validation (10%), and testing (10%) sets. The Ultralytics YOLOv8.0.28 model was employed for automated segmentation.</p><p><strong>Results: </strong>The YOLOv8s-seg model consisted of 195 layers and required 42.4 GFLOPs for operation. When tested against the validation set, the algorithm achieved a precision of 0.91, recall of 0.839, and mean average precision at 50% IoU (mAP50) of 0.949. For the segmentation task, similar metrics were observed, including a mAP ranging from 0.675 to 0.679 for IoUs between 50% and 95%.</p><p><strong>Conclusions: </strong>The study shows that a carefully trained AI algorithm can effectively identify and delineate nasal polyps in patients with CRSwNP. Despite certain limitations like the focus on CRSwNP-specific samples, the algorithm presents a promising complementary tool to existing diagnostic methods.</p>","PeriodicalId":11952,"journal":{"name":"European Archives of Oto-Rhino-Laryngology","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Archives of Oto-Rhino-Laryngology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00405-024-08809-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"OTORHINOLARYNGOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Accurate diagnosis and quantification of polyps and symptoms are pivotal for planning the therapeutic strategy of Chronic rhinosinusitis with nasal polyposis (CRSwNP). This pilot study aimed to develop an artificial intelligence (AI)-based image analysis system capable of segmenting nasal polyps from nasal endoscopy videos.

Methods: Recorded nasal videoendoscopies from 52 patients diagnosed with CRSwNP between 2019 and 2022 were retrospectively analyzed. Images extracted were manually segmented on the web application Roboflow. A dataset of 342 images was generated and divided into training (80%), validation (10%), and testing (10%) sets. The Ultralytics YOLOv8.0.28 model was employed for automated segmentation.

Results: The YOLOv8s-seg model consisted of 195 layers and required 42.4 GFLOPs for operation. When tested against the validation set, the algorithm achieved a precision of 0.91, recall of 0.839, and mean average precision at 50% IoU (mAP50) of 0.949. For the segmentation task, similar metrics were observed, including a mAP ranging from 0.675 to 0.679 for IoUs between 50% and 95%.

Conclusions: The study shows that a carefully trained AI algorithm can effectively identify and delineate nasal polyps in patients with CRSwNP. Despite certain limitations like the focus on CRSwNP-specific samples, the algorithm presents a promising complementary tool to existing diagnostic methods.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工智能自动检测和分割鼻息肉:试点研究。
目的:准确诊断和量化鼻息肉及症状对于规划慢性鼻炎伴鼻息肉病(CRSwNP)的治疗策略至关重要。这项试验性研究旨在开发一种基于人工智能(AI)的图像分析系统,该系统能够从鼻内窥镜视频中分割鼻息肉:方法:对2019年至2022年期间诊断为CRSwNP的52名患者的鼻内窥镜检查记录进行了回顾性分析。提取的图像在网络应用程序 Roboflow 上进行人工分割。生成了一个包含 342 幅图像的数据集,并将其分为训练集(80%)、验证集(10%)和测试集(10%)。采用 Ultralytics YOLOv8.0.28 模型进行自动分割:YOLOv8s-seg 模型由 195 层组成,运行需要 42.4 GFLOPs。在对验证集进行测试时,该算法的精确度为 0.91,召回率为 0.839,50% IoU 时的平均精确度 (mAP50) 为 0.949。在分割任务中,也观察到了类似的指标,包括 IoU 在 50% 到 95% 之间的 mAP 为 0.675 到 0.679:这项研究表明,经过仔细训练的人工智能算法可以有效识别和划分 CRSwNP 患者的鼻息肉。尽管该算法存在一些局限性,比如只关注 CRSwNP 特异性样本,但它是现有诊断方法的一种很有前途的补充工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.30
自引率
7.70%
发文量
537
审稿时长
2-4 weeks
期刊介绍: Official Journal of European Union of Medical Specialists – ORL Section and Board Official Journal of Confederation of European Oto-Rhino-Laryngology Head and Neck Surgery "European Archives of Oto-Rhino-Laryngology" publishes original clinical reports and clinically relevant experimental studies, as well as short communications presenting new results of special interest. With peer review by a respected international editorial board and prompt English-language publication, the journal provides rapid dissemination of information by authors from around the world. This particular feature makes it the journal of choice for readers who want to be informed about the continuing state of the art concerning basic sciences and the diagnosis and management of diseases of the head and neck on an international level. European Archives of Oto-Rhino-Laryngology was founded in 1864 as "Archiv für Ohrenheilkunde" by A. von Tröltsch, A. Politzer and H. Schwartze.
期刊最新文献
Correction: A novel olfactory sorting task. Scale for the assessment of mucosal wave dynamics of the free edges during stroboscopic examination: clinical validation study and analysis of results. Drug induced sleep endoscopy and simultaneous polysomnography to predict the effectiveness of mandibular advancement device in obstructive sleep apnea treatment. Endoscopic revision surgery for ossicular chain reconstruction: intraoperative findings and functional outcomes. AI in oncology: comparing the diagnostic and therapeutic potential of claude 3 opus and ChatGPT 4.0 in HNSCC management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1