Intermittent Fasting Improves Social Interaction and Decreases Inflammatory Markers in Cortex and Hippocampus.

IF 4.6 2区 医学 Q1 NEUROSCIENCES Molecular Neurobiology Pub Date : 2025-02-01 Epub Date: 2024-07-13 DOI:10.1007/s12035-024-04340-z
Martín García-Juárez, Adamary García-Rodríguez, Gabriela Cruz-Carrillo, Orlando Flores-Maldonado, Miguel Becerril-Garcia, Lourdes Garza-Ocañas, Ivan Torre-Villalvazo, Alberto Camacho-Morales
{"title":"Intermittent Fasting Improves Social Interaction and Decreases Inflammatory Markers in Cortex and Hippocampus.","authors":"Martín García-Juárez, Adamary García-Rodríguez, Gabriela Cruz-Carrillo, Orlando Flores-Maldonado, Miguel Becerril-Garcia, Lourdes Garza-Ocañas, Ivan Torre-Villalvazo, Alberto Camacho-Morales","doi":"10.1007/s12035-024-04340-z","DOIUrl":null,"url":null,"abstract":"<p><p>Autism spectrum disorder (ASD) is a psychiatric condition characterized by reduced social interaction, anxiety, and stereotypic behaviors related to neuroinflammation and microglia activation. We demonstrated that maternal exposure to Western diet (cafeteria diet or CAF) induced microglia activation, systemic proinflammatory profile, and ASD-like behavior in the offspring. Here, we aimed to identify the effect of alternate day fasting (ADF) as a non-pharmacologic strategy to modulate neuroinflammation and ASD-like behavior in the offspring prenatally exposed to CAF diet. We found that ADF increased plasma beta-hydroxybutyrate (BHB) levels in the offspring exposed to control and CAF diets but not in the cortex (Cx) and hippocampus (Hpp). We observed that ADF increased the CD45 + cells in Cx of both groups; In control individuals, ADF promoted accumulation of CD206 + microglia cells in choroid plexus (CP) and increased in CD45 + macrophages cells and lymphocytes in the Cx. Gestational exposure to CAF diet promoted defective sociability in the offspring; ADF improved social interaction and increased microglia CD206 + in the Hpp and microglia complexity in the dentate gyrus. Additionally, ADF led to attenuation of the ER stress markers (Bip/ATF6/p-JNK) in the Cx and Hpp. Finally, biological modeling showed that fasting promotes higher microglia complexity in Cx, which is related to improvement in social interaction, whereas in dentate gyrus sociability is correlated with less microglia complexity. These data suggest a contribution of intermittent fasting as a physiological stimulus capable of modulating microglia phenotype and complexity in the brain, and social interaction in male mice.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":"1511-1535"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12035-024-04340-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Autism spectrum disorder (ASD) is a psychiatric condition characterized by reduced social interaction, anxiety, and stereotypic behaviors related to neuroinflammation and microglia activation. We demonstrated that maternal exposure to Western diet (cafeteria diet or CAF) induced microglia activation, systemic proinflammatory profile, and ASD-like behavior in the offspring. Here, we aimed to identify the effect of alternate day fasting (ADF) as a non-pharmacologic strategy to modulate neuroinflammation and ASD-like behavior in the offspring prenatally exposed to CAF diet. We found that ADF increased plasma beta-hydroxybutyrate (BHB) levels in the offspring exposed to control and CAF diets but not in the cortex (Cx) and hippocampus (Hpp). We observed that ADF increased the CD45 + cells in Cx of both groups; In control individuals, ADF promoted accumulation of CD206 + microglia cells in choroid plexus (CP) and increased in CD45 + macrophages cells and lymphocytes in the Cx. Gestational exposure to CAF diet promoted defective sociability in the offspring; ADF improved social interaction and increased microglia CD206 + in the Hpp and microglia complexity in the dentate gyrus. Additionally, ADF led to attenuation of the ER stress markers (Bip/ATF6/p-JNK) in the Cx and Hpp. Finally, biological modeling showed that fasting promotes higher microglia complexity in Cx, which is related to improvement in social interaction, whereas in dentate gyrus sociability is correlated with less microglia complexity. These data suggest a contribution of intermittent fasting as a physiological stimulus capable of modulating microglia phenotype and complexity in the brain, and social interaction in male mice.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
间歇性禁食能改善社交互动并减少大脑皮层和海马体中的炎症标记物
自闭症谱系障碍(ASD)是一种精神疾病,其特点是社交互动减少、焦虑以及与神经炎症和小胶质细胞活化有关的刻板行为。我们证实,母体暴露于西方饮食(自助餐饮食或 CAF)会诱导小胶质细胞活化、全身促炎症特征以及后代的类似 ASD 行为。在此,我们旨在确定隔日禁食(ADF)作为一种非药物策略对调节产前暴露于CAF饮食的后代的神经炎症和ASD样行为的影响。我们发现,ADF能增加暴露于对照组和CAF饮食的后代的血浆β-羟丁酸(BHB)水平,但不能增加皮层(Cx)和海马(Hpp)的血浆β-羟丁酸(BHB)水平。我们观察到,ADF 增加了两组 Cx 中的 CD45 + 细胞;在对照组中,ADF 促进了脉络丛(CP)中 CD206 + 小胶质细胞的聚集,并增加了 Cx 中 CD45 + 巨噬细胞和淋巴细胞的数量。妊娠期暴露于CAF饮食会导致后代社交能力缺陷;ADF改善了社交互动,增加了Hpp中CD206 +小胶质细胞和齿状回中小胶质细胞的复杂性。此外,ADF导致Cx和Hpp的ER应激标记(Bip/ATF6/p-JNK)减弱。最后,生物建模显示,禁食可提高Cx的小胶质细胞复杂性,这与社会交往的改善有关,而在齿状回,社会交往能力与较低的小胶质细胞复杂性相关。这些数据表明,间歇性禁食是一种生理刺激,能够调节雄性小鼠大脑中的小胶质细胞表型和复杂性以及社会交往能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Neurobiology
Molecular Neurobiology 医学-神经科学
CiteScore
9.00
自引率
2.00%
发文量
480
审稿时长
1 months
期刊介绍: Molecular Neurobiology is an exciting journal for neuroscientists needing to stay in close touch with progress at the forefront of molecular brain research today. It is an especially important periodical for graduate students and "postdocs," specifically designed to synthesize and critically assess research trends for all neuroscientists hoping to stay active at the cutting edge of this dramatically developing area. This journal has proven to be crucial in departmental libraries, serving as essential reading for every committed neuroscientist who is striving to keep abreast of all rapid developments in a forefront field. Most recent significant advances in experimental and clinical neuroscience have been occurring at the molecular level. Until now, there has been no journal devoted to looking closely at this fragmented literature in a critical, coherent fashion. Each submission is thoroughly analyzed by scientists and clinicians internationally renowned for their special competence in the areas treated.
期刊最新文献
PD-Like Pathogenesis in Caenorhabditis elegans Intestinally Infected with Nocardia farcinica and the Underlying Molecular Mechanisms. Single-Cell Cortical Transcriptomics Reveals Common and Distinct Changes in Cell-Cell Communication in Alzheimer's and Parkinson's Disease. Identification of Autophagy-Related Genes in Patients with Acute Spinal Cord Injury and Analysis of Potential Therapeutic Targets. Comparative Neuroprotective Potential of Nanoformulated and Free Resveratrol Against Cuprizone-Induced Demyelination in Rats. Single-Nucleus Landscape of Glial Cells and Neurons in Alzheimer's Disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1