Neuroimaging meta regression for coordinate based meta analysis data with a spatial model.

IF 1.8 3区 数学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Biostatistics Pub Date : 2024-10-01 DOI:10.1093/biostatistics/kxae024
Yifan Yu, Rosario Pintos Lobo, Michael Cody Riedel, Katherine Bottenhorn, Angela R Laird, Thomas E Nichols
{"title":"Neuroimaging meta regression for coordinate based meta analysis data with a spatial model.","authors":"Yifan Yu, Rosario Pintos Lobo, Michael Cody Riedel, Katherine Bottenhorn, Angela R Laird, Thomas E Nichols","doi":"10.1093/biostatistics/kxae024","DOIUrl":null,"url":null,"abstract":"<p><p>Coordinate-based meta-analysis combines evidence from a collection of neuroimaging studies to estimate brain activation. In such analyses, a key practical challenge is to find a computationally efficient approach with good statistical interpretability to model the locations of activation foci. In this article, we propose a generative coordinate-based meta-regression (CBMR) framework to approximate a smooth activation intensity function and investigate the effect of study-level covariates (e.g. year of publication, sample size). We employ a spline parameterization to model the spatial structure of brain activation and consider four stochastic models for modeling the random variation in foci. To examine the validity of CBMR, we estimate brain activation on 20 meta-analytic datasets, conduct spatial homogeneity tests at the voxel level, and compare the results to those generated by existing kernel-based and model-based approaches. Keywords: generalized linear models; meta-analysis; spatial statistics; statistical modeling.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":"1210-1232"},"PeriodicalIF":1.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11471956/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biostatistics/kxae024","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Coordinate-based meta-analysis combines evidence from a collection of neuroimaging studies to estimate brain activation. In such analyses, a key practical challenge is to find a computationally efficient approach with good statistical interpretability to model the locations of activation foci. In this article, we propose a generative coordinate-based meta-regression (CBMR) framework to approximate a smooth activation intensity function and investigate the effect of study-level covariates (e.g. year of publication, sample size). We employ a spline parameterization to model the spatial structure of brain activation and consider four stochastic models for modeling the random variation in foci. To examine the validity of CBMR, we estimate brain activation on 20 meta-analytic datasets, conduct spatial homogeneity tests at the voxel level, and compare the results to those generated by existing kernel-based and model-based approaches. Keywords: generalized linear models; meta-analysis; spatial statistics; statistical modeling.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用空间模型对基于坐标的元分析数据进行神经成像元回归。
基于坐标的荟萃分析结合了一系列神经成像研究的证据来估计大脑的激活情况。在此类分析中,一个关键的实际挑战是找到一种计算效率高、统计解释性好的方法来模拟激活灶的位置。在本文中,我们提出了一种基于坐标的生成元回归(CBMR)框架,以近似平滑的激活强度函数,并研究研究层面协变量(如发表年份、样本大小)的影响。我们采用样条参数化来模拟大脑激活的空间结构,并考虑了四种随机模型来模拟病灶的随机变化。为了检验 CBMR 的有效性,我们在 20 个元分析数据集上估计了脑激活情况,在体素水平上进行了空间同质性测试,并将结果与现有的基于核的方法和基于模型的方法得出的结果进行了比较。关键词:广义线性模型;元分析;空间统计学;统计建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biostatistics
Biostatistics 生物-数学与计算生物学
CiteScore
5.10
自引率
4.80%
发文量
45
审稿时长
6-12 weeks
期刊介绍: Among the important scientific developments of the 20th century is the explosive growth in statistical reasoning and methods for application to studies of human health. Examples include developments in likelihood methods for inference, epidemiologic statistics, clinical trials, survival analysis, and statistical genetics. Substantive problems in public health and biomedical research have fueled the development of statistical methods, which in turn have improved our ability to draw valid inferences from data. The objective of Biostatistics is to advance statistical science and its application to problems of human health and disease, with the ultimate goal of advancing the public''s health.
期刊最新文献
A semiparametric Gaussian mixture model for chest CT-based 3D blood vessel reconstruction. Simultaneous clustering and estimation of networks in multiple graphical models. A joint normal-ordinal (probit) model for ordinal and continuous longitudinal data. A modeling framework for detecting and leveraging node-level information in Bayesian network inference. A marginal structural model for normal tissue complication probability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1