A novel approach for handling missing data to enhance network intrusion detection system

Mahjabeen Tahir , Azizol Abdullah , Nur Izura Udzir , Khairul Azhar Kasmiran
{"title":"A novel approach for handling missing data to enhance network intrusion detection system","authors":"Mahjabeen Tahir ,&nbsp;Azizol Abdullah ,&nbsp;Nur Izura Udzir ,&nbsp;Khairul Azhar Kasmiran","doi":"10.1016/j.csa.2024.100063","DOIUrl":null,"url":null,"abstract":"<div><p>Managing missing data is a critical challenge in Intrusion Detection System (IDS) datasets, significantly affecting the performance of deep learning models. To address this issue, we introduce DeepLearning_Based_MissingData_Imputation (DMDI), a novel method designed to enhance the quality of input data by efficiently handling missing values. Our approach employs the Random Missing Value (RMV) algorithm to simulate missing data, enabling thorough testing and comparison of various imputation techniques. The DMDI method integrates a stacked denoising autoencoder with Gradient Boosting to improve imputation accuracy. We evaluated the effectiveness of our approach through three experimental phases: generating missing data, imputing missing values, and assessing imputation models. Using the NSL-KDD and UNSW-NB15 datasets, our results demonstrate significant improvements in the performance of five different classifiers (SVM, KNN, Logistic Regression, Decision Tree, and Random Forest) after imputation. On average, our method achieved accuracy improvements ranging from 0.95 to 0.97 across these classifiers compared to baseline imputation methods. Detailed analysis using Python 3 validates our findings, demonstrating enhanced model performance and robustness. This study underscores the necessity of precise missing data imputation for enhancing deep learning tasks, particularly in anomaly detection systems. It provides a reliable solution for managing missing data in IDS datasets.</p></div>","PeriodicalId":100351,"journal":{"name":"Cyber Security and Applications","volume":"3 ","pages":"Article 100063"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772918424000298/pdfft?md5=09e2857fa1c1aad5fc434b6f9663038b&pid=1-s2.0-S2772918424000298-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cyber Security and Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772918424000298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Managing missing data is a critical challenge in Intrusion Detection System (IDS) datasets, significantly affecting the performance of deep learning models. To address this issue, we introduce DeepLearning_Based_MissingData_Imputation (DMDI), a novel method designed to enhance the quality of input data by efficiently handling missing values. Our approach employs the Random Missing Value (RMV) algorithm to simulate missing data, enabling thorough testing and comparison of various imputation techniques. The DMDI method integrates a stacked denoising autoencoder with Gradient Boosting to improve imputation accuracy. We evaluated the effectiveness of our approach through three experimental phases: generating missing data, imputing missing values, and assessing imputation models. Using the NSL-KDD and UNSW-NB15 datasets, our results demonstrate significant improvements in the performance of five different classifiers (SVM, KNN, Logistic Regression, Decision Tree, and Random Forest) after imputation. On average, our method achieved accuracy improvements ranging from 0.95 to 0.97 across these classifiers compared to baseline imputation methods. Detailed analysis using Python 3 validates our findings, demonstrating enhanced model performance and robustness. This study underscores the necessity of precise missing data imputation for enhancing deep learning tasks, particularly in anomaly detection systems. It provides a reliable solution for managing missing data in IDS datasets.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
处理缺失数据以增强网络入侵检测系统的新方法
管理缺失数据是入侵检测系统(IDS)数据集中的一个关键挑战,会严重影响深度学习模型的性能。为了解决这个问题,我们引入了基于深度学习的缺失数据计算(DeepLearning_Based_MissingData_Imputation,DMDI),这是一种新颖的方法,旨在通过有效处理缺失值来提高输入数据的质量。我们的方法采用随机缺失值(RMV)算法来模拟缺失数据,从而能够对各种估算技术进行全面测试和比较。DMDI 方法集成了堆叠去噪自动编码器和梯度提升技术,以提高估算的准确性。我们通过三个实验阶段评估了我们方法的有效性:生成缺失数据、估算缺失值和评估估算模型。通过使用 NSL-KDD 和 UNSW-NB15 数据集,我们的结果表明,五种不同分类器(SVM、KNN、逻辑回归、决策树和随机森林)的性能在估算后都有显著提高。与基线归因方法相比,我们的方法在这些分类器中平均提高了 0.95 到 0.97 的准确率。使用 Python 3 进行的详细分析验证了我们的发现,证明了模型性能和稳健性的提高。这项研究强调了精确缺失数据估算对增强深度学习任务的必要性,尤其是在异常检测系统中。它为管理 IDS 数据集中的缺失数据提供了可靠的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.20
自引率
0.00%
发文量
0
期刊最新文献
Deep learning-driven defense strategies for mitigating DDoS attacks in cloud computing environments Privacy-preserving security of IoT networks: A comparative analysis of methods and applications Earthworm optimization algorithm based cascade LSTM-GRU model for android malware detection A survey on intrusion detection system in IoT networks Comparison of mitigating DDoS attacks in software defined networking and IoT platforms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1