Estimating the uncertainties of satellite derived soil moisture at global scale

IF 5.7 Q1 ENVIRONMENTAL SCIENCES Science of Remote Sensing Pub Date : 2024-07-09 DOI:10.1016/j.srs.2024.100147
François Gibon , Arnaud Mialon , Philippe Richaume , Nemesio Rodríguez-Fernández , Daniel Aberer , Alexander Boresch , Raffaele Crapolicchio , Wouter Dorigo , Alexander Gruber , Irene Himmelbauer , Wolfgang Preimesberger , Roberto Sabia , Pietro Stradiotti , Monika Tercjak , Yann H. Kerr
{"title":"Estimating the uncertainties of satellite derived soil moisture at global scale","authors":"François Gibon ,&nbsp;Arnaud Mialon ,&nbsp;Philippe Richaume ,&nbsp;Nemesio Rodríguez-Fernández ,&nbsp;Daniel Aberer ,&nbsp;Alexander Boresch ,&nbsp;Raffaele Crapolicchio ,&nbsp;Wouter Dorigo ,&nbsp;Alexander Gruber ,&nbsp;Irene Himmelbauer ,&nbsp;Wolfgang Preimesberger ,&nbsp;Roberto Sabia ,&nbsp;Pietro Stradiotti ,&nbsp;Monika Tercjak ,&nbsp;Yann H. Kerr","doi":"10.1016/j.srs.2024.100147","DOIUrl":null,"url":null,"abstract":"<div><p>This study attempts to derive the uncertainty of the soil moisture estimation from passive microwave satellite mission at global scale. To do so, the approach is based on the sensitivity of the Soil Moisture and Ocean Salinity (SMOS) soil moisture retrieval quality to the land surface characteristics within its footprint (presence of forest, topography, open water bodies, sand, clay, bulk density and soil organic carbon content). First, we performed a global assessment of SMOS using <em>in situ</em> measurements from the International Soil Moisture Network (ISMN) as reference, with more than 1900 ISMN stations and 10 years of SMOS data. This assessment shows that the ubRMSD scores vary greatly between locations (with a mean of 0.074 m<sup>3</sup>m<sup>−3</sup> and an interquartile range of 0.030 m<sup>3</sup>m<sup>−3</sup>). Second, the scores are analyzed for different surface conditions within the satellite footprint. The best agreement between the ground measurement and SMOS time series are obtained for low forest cover, low topographic complexity, and marginal presence of open water bodies within the SMOS footprint. Soil parameters also have an impact, with better scores for sandier soils with a high bulk-density and low soil organic carbon content. Finally, we propose to extrapolate the obtained relationships, using a multiple linear regression, in order to derive a global map of SMOS uncertainties based on surface conditions. This map of predicted uncertainties show a diverse range of ubRMSD values across the globe (with a mean of 0.076 m<sup>3</sup>m<sup>−3</sup> and an interquartile range of 0.031 m<sup>3</sup>m<sup>−3</sup>) depending on the surface characteristics. At the ISMN site location, the predicted ubRMSD shows similar results than the comparison between SMOS and the <em>in situ</em> measurements. The map of predicted SMOS ubRMSD represents an upper bound estimate of the SMOS uncertainty, as it includes the uncertainties of the <em>in situ</em> sensor measurements and the scale mismatch. Further investigations will focus on the different components of this uncertainty budget to obtain a better assessment of the absolute uncertainties of SMOS soil moisture retrievals across the globe.</p></div>","PeriodicalId":101147,"journal":{"name":"Science of Remote Sensing","volume":"10 ","pages":"Article 100147"},"PeriodicalIF":5.7000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666017224000312/pdfft?md5=ef45d7efb157d210212aa9b323c36eb6&pid=1-s2.0-S2666017224000312-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666017224000312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study attempts to derive the uncertainty of the soil moisture estimation from passive microwave satellite mission at global scale. To do so, the approach is based on the sensitivity of the Soil Moisture and Ocean Salinity (SMOS) soil moisture retrieval quality to the land surface characteristics within its footprint (presence of forest, topography, open water bodies, sand, clay, bulk density and soil organic carbon content). First, we performed a global assessment of SMOS using in situ measurements from the International Soil Moisture Network (ISMN) as reference, with more than 1900 ISMN stations and 10 years of SMOS data. This assessment shows that the ubRMSD scores vary greatly between locations (with a mean of 0.074 m3m−3 and an interquartile range of 0.030 m3m−3). Second, the scores are analyzed for different surface conditions within the satellite footprint. The best agreement between the ground measurement and SMOS time series are obtained for low forest cover, low topographic complexity, and marginal presence of open water bodies within the SMOS footprint. Soil parameters also have an impact, with better scores for sandier soils with a high bulk-density and low soil organic carbon content. Finally, we propose to extrapolate the obtained relationships, using a multiple linear regression, in order to derive a global map of SMOS uncertainties based on surface conditions. This map of predicted uncertainties show a diverse range of ubRMSD values across the globe (with a mean of 0.076 m3m−3 and an interquartile range of 0.031 m3m−3) depending on the surface characteristics. At the ISMN site location, the predicted ubRMSD shows similar results than the comparison between SMOS and the in situ measurements. The map of predicted SMOS ubRMSD represents an upper bound estimate of the SMOS uncertainty, as it includes the uncertainties of the in situ sensor measurements and the scale mismatch. Further investigations will focus on the different components of this uncertainty budget to obtain a better assessment of the absolute uncertainties of SMOS soil moisture retrievals across the globe.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
估算全球范围卫星土壤水分的不确定性
本研究试图从全球范围内的被动微波卫星任务中得出土壤水分估算的不确定性。为此,该方法基于土壤水分和海洋盐度(SMOS)土壤水分检索质量对其覆盖范围内地表特征(森林、地形、开放水体、沙、粘土、容重和土壤有机碳含量)的敏感性。首先,我们以国际土壤水分网络(ISMN)的原位测量数据为参考,对 SMOS 进行了全球评估,国际土壤水分网络有 1900 多个站点和 10 年的 SMOS 数据。评估结果表明,不同地点的 ubRMSD 分数差异很大(平均值为 0.074 m3m-3,四分位数间范围为 0.030 m3m-3)。其次,对卫星覆盖范围内不同地表条件下的得分进行了分析。森林覆盖率低、地形复杂程度低、卫星覆盖区内有少量开放水体时,地面测量值与 SMOS 时间序列的一致性最好。土壤参数也有影响,体积密度高、土壤有机碳含量低的沙质土壤得分更高。最后,我们建议使用多元线性回归法推断所获得的关系,以得出基于地表条件的全球 SMOS 不确定性地图。该预测不确定性地图显示,根据地表特征,全球各地的 ubRMSD 值范围各不相同(平均值为 0.076 m3m-3,四分位数间范围为 0.031 m3m-3)。在 ISMN 站点位置,预测的 ubRMSD 值与 SMOS 和现场测量值的比较结果相似。预测的 SMOS ubRMSD 图代表了 SMOS 不确定性的上限估计,因为它包括了原位传感器测量的不确定性和尺度不匹配。进一步的调查将集中于这一不确定性预算的不同组成部分,以便更好地评估 SMOS 全球土壤水分检索的绝对不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.20
自引率
0.00%
发文量
0
期刊最新文献
Global soil moisture mapping at 5 km by combining GNSS reflectometry and machine learning in view of HydroGNSS Coastal vertical land motion across Southeast Asia derived from combining tide gauge and satellite altimetry observations Identifying thermokarst lakes using deep learning and high-resolution satellite images A two-stage deep learning architecture for detection global coastal and offshore submesoscale ocean eddy using SDGSAT-1 multispectral imagery A comprehensive evaluation of satellite-based and reanalysis soil moisture products over the upper Blue Nile Basin, Ethiopia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1