{"title":"CLRiuS: Contrastive Learning for intrinsically unordered Steel Scrap","authors":"Michael Schäfer , Ulrike Faltings , Björn Glaser","doi":"10.1016/j.mlwa.2024.100573","DOIUrl":null,"url":null,"abstract":"<div><p>There has been remarkable progress in the field of Deep Learning and Computer Vision, but there is a lack of freely available labeled data, especially when it comes to data for specific industrial applications. However, large volumes of structured, semi-structured and unstructured data are generated in industrial environments, from which meaningful representations can be learned. The effort required for manual labeling is extremely high and can often only be carried out by domain experts. Self-supervised methods have proven their effectiveness in recent years in a wide variety of areas such as natural language processing or computer vision. In contrast to supervised methods, self-supervised techniques are rarely used in real industrial applications. In this paper, we present a self-supervised contrastive learning approach that outperforms existing supervised approaches on the used scrap dataset. We use different types of augmentations to extract the fine-grained structures that are typical for this type of images of intrinsically unordered items. This extracts a wider range of features and encodes more aspects of the input image. This approach makes it possible to learn characteristics from images that are common for applications in the industry, such as quality control. In addition, we show that this self-supervised learning approach can be successfully applied to scene-like images for classification.</p></div>","PeriodicalId":74093,"journal":{"name":"Machine learning with applications","volume":"17 ","pages":"Article 100573"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666827024000495/pdfft?md5=18eb4b138c0ed688f7c6e0a6f8c6b4a3&pid=1-s2.0-S2666827024000495-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning with applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666827024000495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
There has been remarkable progress in the field of Deep Learning and Computer Vision, but there is a lack of freely available labeled data, especially when it comes to data for specific industrial applications. However, large volumes of structured, semi-structured and unstructured data are generated in industrial environments, from which meaningful representations can be learned. The effort required for manual labeling is extremely high and can often only be carried out by domain experts. Self-supervised methods have proven their effectiveness in recent years in a wide variety of areas such as natural language processing or computer vision. In contrast to supervised methods, self-supervised techniques are rarely used in real industrial applications. In this paper, we present a self-supervised contrastive learning approach that outperforms existing supervised approaches on the used scrap dataset. We use different types of augmentations to extract the fine-grained structures that are typical for this type of images of intrinsically unordered items. This extracts a wider range of features and encodes more aspects of the input image. This approach makes it possible to learn characteristics from images that are common for applications in the industry, such as quality control. In addition, we show that this self-supervised learning approach can be successfully applied to scene-like images for classification.