Comparison of informative modelling and machine learning methods in landslide vulnerability evaluation – a case study of Wenchuan County, China

IF 3.3 4区 地球科学 Q2 ENVIRONMENTAL SCIENCES Geocarto International Pub Date : 2024-06-30 DOI:10.1080/10106049.2024.2361714
Yutao Chen, Ning Li, Boju Zhao, Fucheng Xing, Han Xiang
{"title":"Comparison of informative modelling and machine learning methods in landslide vulnerability evaluation – a case study of Wenchuan County, China","authors":"Yutao Chen, Ning Li, Boju Zhao, Fucheng Xing, Han Xiang","doi":"10.1080/10106049.2024.2361714","DOIUrl":null,"url":null,"abstract":"After the earthquake in Wenchuan in 2008, landslides have been happening frequently, causing a buildup of sediment in slopes and gullies. This creates a potential for mudslides and flash floods. It...","PeriodicalId":12532,"journal":{"name":"Geocarto International","volume":"30 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geocarto International","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/10106049.2024.2361714","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

After the earthquake in Wenchuan in 2008, landslides have been happening frequently, causing a buildup of sediment in slopes and gullies. This creates a potential for mudslides and flash floods. It...
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
滑坡脆弱性评估中的信息建模和机器学习方法比较 - 中国汶川县案例研究
2008 年汶川地震后,山体滑坡频繁发生,造成山坡和沟壑中泥沙淤积。这为泥石流和山洪暴发埋下了隐患。这...
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geocarto International
Geocarto International ENVIRONMENTAL SCIENCES-GEOSCIENCES, MULTIDISCIPLINARY
CiteScore
6.30
自引率
13.20%
发文量
407
审稿时长
>12 weeks
期刊介绍: Geocarto International is a professional academic journal serving the world-wide scientific and user community in the fields of remote sensing, GIS, geoscience and environmental sciences. The journal is designed: to promote multidisciplinary research in and application of remote sensing and GIS in geosciences and environmental sciences; to enhance international exchange of information on new developments and applications in the field of remote sensing and GIS and related disciplines; to foster interest in and understanding of science and applications on remote sensing and GIS technologies; and to encourage the publication of timely papers and research results on remote sensing and GIS applications in geosciences and environmental sciences from the world-wide science community. The journal welcomes contributions on the following: precise, illustrated papers on new developments, technologies and applications of remote sensing; research results in remote sensing, GISciences and related disciplines; Reports on new and innovative applications and projects in these areas; and assessment and evaluation of new remote sensing and GIS equipment, software and hardware.
期刊最新文献
A novel deep learning model for extracting arable land from high-resolution remote sensing images in hilly areas: a case study in the Sichuan Basin of Southwest China A regional-level spatiotemporal perspective of land use and land cover change impact on forest aboveground biomass in three gorges reservoir region, China Evaluation of urban ecological benefits utilizing vegetated areas metrics in Nanjing, China Modelling topographic influences on vegetation vigour in the Cradle Nature Reserve, Gauteng province, South Africa Integrating dual evaluation and FLUS model for land use simulation and urban growth boundary delineation in production-living-ecology spaces: a case study of Central Harbin, China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1