Well-Posedness for Path-Distribution Dependent Stochastic Differential Equations with Singular Drifts

Pub Date : 2024-07-14 DOI:10.1007/s10959-024-01356-y
Xiao-Yu Zhao
{"title":"Well-Posedness for Path-Distribution Dependent Stochastic Differential Equations with Singular Drifts","authors":"Xiao-Yu Zhao","doi":"10.1007/s10959-024-01356-y","DOIUrl":null,"url":null,"abstract":"<p>Well-posedness is derived for singular path-distribution dependent stochastic differential equations (SDEs) with non-degenerate noise, where the drift is allowed to be singular in the current state, but maintains local Lipschitz continuity in the historical path, and the coefficients are Lipschitz continuous with respect to a weighted variation distance in the distribution variable. Notably, this result is new even for classical path-dependent SDEs where the coefficients are distribution independent. Moreover, by strengthening the local Lipschitz continuity to Lipschitz continuity and replacing the weighted variation distance with the Wasserstein distance, we also obtain well-posedness.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10959-024-01356-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Well-posedness is derived for singular path-distribution dependent stochastic differential equations (SDEs) with non-degenerate noise, where the drift is allowed to be singular in the current state, but maintains local Lipschitz continuity in the historical path, and the coefficients are Lipschitz continuous with respect to a weighted variation distance in the distribution variable. Notably, this result is new even for classical path-dependent SDEs where the coefficients are distribution independent. Moreover, by strengthening the local Lipschitz continuity to Lipschitz continuity and replacing the weighted variation distance with the Wasserstein distance, we also obtain well-posedness.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
具有奇异漂移的路径分布依赖随机微分方程的良好拟合
本文推导了具有非退化噪声的奇异路径依赖分布随机微分方程(SDE)的良好求解性,其中允许漂移在当前状态下是奇异的,但在历史路径上保持局部利普希兹连续性,并且系数相对于分布变量的加权变化距离是利普希兹连续的。值得注意的是,即使对于系数与分布无关的经典路径依赖 SDE,这一结果也是全新的。此外,通过将局部 Lipschitz 连续性加强为 Lipschitz 连续性,并用 Wasserstein 距离代替加权变化距离,我们还获得了良好拟合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1