Exploring Impurity Effects and Catalyst Surface Features in Furfural Electroreduction for Jet Fuel Precursor Production: Experimental and Molecular Dynamics Insights
Sahar Rabet, Willi Tobaschus, Gaseng Chung, Dr. Thomas Gimpel, Prof. Dr. Gabriele Raabe, Prof. Dr. Daniel Schröder, Dr. Balakrishnan Munirathinam
{"title":"Exploring Impurity Effects and Catalyst Surface Features in Furfural Electroreduction for Jet Fuel Precursor Production: Experimental and Molecular Dynamics Insights","authors":"Sahar Rabet, Willi Tobaschus, Gaseng Chung, Dr. Thomas Gimpel, Prof. Dr. Gabriele Raabe, Prof. Dr. Daniel Schröder, Dr. Balakrishnan Munirathinam","doi":"10.1002/celc.202400336","DOIUrl":null,"url":null,"abstract":"<p>This research investigates the impact of laser-structuring of lead electrodes on the selectivity and production rate of hydrofuroin, a valuable jet fuel precursor derived from furfural (FF). Laser structuring of electrodes led to a slight enhancement in hydrofuroin selectivity, along with an improved production rate, suggesting promising advancements in electrosynthesis methodologies. The addition of acetic acid as an impurity did not significantly affect the selectivity or the production rate. This finding indicates that the catalytic activity of the electrode surface was not diminished by this impurity. Analysis via high-performance liquid chromatography revealed the presence of two isomers of hydrofuroin, indicating a complex reaction pathway. Combined experimental and molecular dynamics simulations indicated inner sphere adsorption of FF and H<sup>+</sup> ions and outer sphere dimerization reaction to form hydrofuroin. These findings offer insights into surface morphology, adsorption, and reaction pathways, guiding future optimization of catalytic systems for sustainable chemical synthesis.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"11 15","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400336","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/celc.202400336","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
This research investigates the impact of laser-structuring of lead electrodes on the selectivity and production rate of hydrofuroin, a valuable jet fuel precursor derived from furfural (FF). Laser structuring of electrodes led to a slight enhancement in hydrofuroin selectivity, along with an improved production rate, suggesting promising advancements in electrosynthesis methodologies. The addition of acetic acid as an impurity did not significantly affect the selectivity or the production rate. This finding indicates that the catalytic activity of the electrode surface was not diminished by this impurity. Analysis via high-performance liquid chromatography revealed the presence of two isomers of hydrofuroin, indicating a complex reaction pathway. Combined experimental and molecular dynamics simulations indicated inner sphere adsorption of FF and H+ ions and outer sphere dimerization reaction to form hydrofuroin. These findings offer insights into surface morphology, adsorption, and reaction pathways, guiding future optimization of catalytic systems for sustainable chemical synthesis.
期刊介绍:
ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.