{"title":"A Globally Convergent Inertial First-Order Optimization Method for Multidimensional Scaling","authors":"Noga Ram, Shoham Sabach","doi":"10.1007/s10957-024-02486-3","DOIUrl":null,"url":null,"abstract":"<p>Multidimensional scaling (MDS) is a popular tool for dimensionality reduction and data visualization. Given distances between data points and a target low-dimension, the MDS problem seeks to find a configuration of these points in the low-dimensional space, such that the inter-point distances are preserved as well as possible. We focus on the most common approach to formulate the MDS problem, known as <i>stress</i> minimization, which results in a challenging non-smooth and non-convex optimization problem. In this paper, we propose an inertial version of the well-known SMACOF Algorithm, which we call AI-SMACOF. This algorithm is proven to be globally convergent, and to the best of our knowledge this is the first result of this kind for algorithms aiming at solving the stress MDS minimization. In addition to the theoretical findings, numerical experiments provide another evidence for the superiority of the proposed algorithm.</p>","PeriodicalId":50100,"journal":{"name":"Journal of Optimization Theory and Applications","volume":"26 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optimization Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10957-024-02486-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Multidimensional scaling (MDS) is a popular tool for dimensionality reduction and data visualization. Given distances between data points and a target low-dimension, the MDS problem seeks to find a configuration of these points in the low-dimensional space, such that the inter-point distances are preserved as well as possible. We focus on the most common approach to formulate the MDS problem, known as stress minimization, which results in a challenging non-smooth and non-convex optimization problem. In this paper, we propose an inertial version of the well-known SMACOF Algorithm, which we call AI-SMACOF. This algorithm is proven to be globally convergent, and to the best of our knowledge this is the first result of this kind for algorithms aiming at solving the stress MDS minimization. In addition to the theoretical findings, numerical experiments provide another evidence for the superiority of the proposed algorithm.
期刊介绍:
The Journal of Optimization Theory and Applications is devoted to the publication of carefully selected regular papers, invited papers, survey papers, technical notes, book notices, and forums that cover mathematical optimization techniques and their applications to science and engineering. Typical theoretical areas include linear, nonlinear, mathematical, and dynamic programming. Among the areas of application covered are mathematical economics, mathematical physics and biology, and aerospace, chemical, civil, electrical, and mechanical engineering.