Pd/N-doped carbon dots@dendritic mesoporous silica nanospheres: A highly efficient catalyst for the hydrogenation of 4-nitrophenol

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Nano Research Pub Date : 2024-07-12 DOI:10.1007/s12274-024-6809-9
Weiruo Liu, Yanbin Zhu, Jiwei Wang, Haisong Feng, Yunpu Zhai, Wei Li, Dongyuan Zhao
{"title":"Pd/N-doped carbon dots@dendritic mesoporous silica nanospheres: A highly efficient catalyst for the hydrogenation of 4-nitrophenol","authors":"Weiruo Liu,&nbsp;Yanbin Zhu,&nbsp;Jiwei Wang,&nbsp;Haisong Feng,&nbsp;Yunpu Zhai,&nbsp;Wei Li,&nbsp;Dongyuan Zhao","doi":"10.1007/s12274-024-6809-9","DOIUrl":null,"url":null,"abstract":"<div><p>Highly dispersed Pd/N-doped carbon dots (Pd/NCDs) were successfully immobilized in the mesoporous channels of amino-functionalized dendritic mesoporous silica nanospheres (NMS). The synthesized Pd/NCDs@NMS catalyst exhibits outstanding performance in the catalytic reduction of 4-nitrophenol (4-NP), achieving a turnover frequency of 1461.8 mol·mol<sub>Pd</sub><sup>−1</sup>·h<sup>−1</sup>, with the conversion rate remaining above 80% after 11 cycles. Experiments and density functional theory calculations reveal that the NCDs significantly affect the electronic structure of Pd nanoparticles, leading to changes in the energy barriers for the adsorption of 4-NP at the Pd sites and the conversion of 4-NP reaction intermediates, which is a key factor contributing to the catalytic performance. This study offers a new strategy for synthesizing carbon-dot-modified metal-based catalysts.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":"17 9","pages":"7967 - 7974"},"PeriodicalIF":9.5000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12274-024-6809-9","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Highly dispersed Pd/N-doped carbon dots (Pd/NCDs) were successfully immobilized in the mesoporous channels of amino-functionalized dendritic mesoporous silica nanospheres (NMS). The synthesized Pd/NCDs@NMS catalyst exhibits outstanding performance in the catalytic reduction of 4-nitrophenol (4-NP), achieving a turnover frequency of 1461.8 mol·molPd−1·h−1, with the conversion rate remaining above 80% after 11 cycles. Experiments and density functional theory calculations reveal that the NCDs significantly affect the electronic structure of Pd nanoparticles, leading to changes in the energy barriers for the adsorption of 4-NP at the Pd sites and the conversion of 4-NP reaction intermediates, which is a key factor contributing to the catalytic performance. This study offers a new strategy for synthesizing carbon-dot-modified metal-based catalysts.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pd/N 掺杂碳点@树枝状介孔二氧化硅纳米球:一种高效的 4-硝基苯酚氢化催化剂
在氨基功能化树枝状介孔二氧化硅纳米球(NMS)的介孔通道中成功固定了高度分散的 Pd/N掺杂碳点(Pd/NCDs)。合成的 Pd/NCDs@NMS 催化剂在催化还原 4-硝基苯酚(4-NP)过程中表现出优异的性能,其转化率达到 1461.8 mol-molPd-1-h-1,11 次循环后转化率仍保持在 80% 以上。实验和密度泛函理论计算表明,NCDs 显著影响了钯纳米粒子的电子结构,导致钯位点吸附 4-NP 和转化 4-NP 反应中间产物的能垒发生变化,这是影响催化性能的关键因素。这项研究为合成碳点修饰的金属催化剂提供了一种新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Research
Nano Research 化学-材料科学:综合
CiteScore
14.30
自引率
11.10%
发文量
2574
审稿时长
1.7 months
期刊介绍: Nano Research is a peer-reviewed, international and interdisciplinary research journal that focuses on all aspects of nanoscience and nanotechnology. It solicits submissions in various topical areas, from basic aspects of nanoscale materials to practical applications. The journal publishes articles on synthesis, characterization, and manipulation of nanomaterials; nanoscale physics, electrical transport, and quantum physics; scanning probe microscopy and spectroscopy; nanofluidics; nanosensors; nanoelectronics and molecular electronics; nano-optics, nano-optoelectronics, and nano-photonics; nanomagnetics; nanobiotechnology and nanomedicine; and nanoscale modeling and simulations. Nano Research offers readers a combination of authoritative and comprehensive Reviews, original cutting-edge research in Communication and Full Paper formats. The journal also prioritizes rapid review to ensure prompt publication.
期刊最新文献
High-performance thermal interface materials enabled by vertical alignment of lightweight and soft graphene foams Precise synthesis of dual atom sites for electrocatalysis Liquid-encapsulated quantum dot for enhanced UV and thermal stability of quantum dot color conversion films Rational design and structural regulation of near-infrared silver chalcogenide quantum dots Exploring the potential of simple automation concepts for quantifying functional groups on nanomaterials with optical assays
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1