Evaluating Voice Command Pipelines for Drone Control: From STT and LLM to Direct Classification and Siamese Networks

Lucca Emmanuel Pineli Simões, Lucas Brandão Rodrigues, Rafaela Mota Silva, Gustavo Rodrigues da Silva
{"title":"Evaluating Voice Command Pipelines for Drone Control: From STT and LLM to Direct Classification and Siamese Networks","authors":"Lucca Emmanuel Pineli Simões, Lucas Brandão Rodrigues, Rafaela Mota Silva, Gustavo Rodrigues da Silva","doi":"arxiv-2407.08658","DOIUrl":null,"url":null,"abstract":"This paper presents the development and comparative evaluation of three voice\ncommand pipelines for controlling a Tello drone, using speech recognition and\ndeep learning techniques. The aim is to enhance human-machine interaction by\nenabling intuitive voice control of drone actions. The pipelines developed\ninclude: (1) a traditional Speech-to-Text (STT) followed by a Large Language\nModel (LLM) approach, (2) a direct voice-to-function mapping model, and (3) a\nSiamese neural network-based system. Each pipeline was evaluated based on\ninference time, accuracy, efficiency, and flexibility. Detailed methodologies,\ndataset preparation, and evaluation metrics are provided, offering a\ncomprehensive analysis of each pipeline's strengths and applicability across\ndifferent scenarios.","PeriodicalId":501178,"journal":{"name":"arXiv - CS - Sound","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Sound","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.08658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the development and comparative evaluation of three voice command pipelines for controlling a Tello drone, using speech recognition and deep learning techniques. The aim is to enhance human-machine interaction by enabling intuitive voice control of drone actions. The pipelines developed include: (1) a traditional Speech-to-Text (STT) followed by a Large Language Model (LLM) approach, (2) a direct voice-to-function mapping model, and (3) a Siamese neural network-based system. Each pipeline was evaluated based on inference time, accuracy, efficiency, and flexibility. Detailed methodologies, dataset preparation, and evaluation metrics are provided, offering a comprehensive analysis of each pipeline's strengths and applicability across different scenarios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评估用于无人机控制的语音命令管道:从 STT 和 LLM 到直接分类和连体网络
本文介绍了利用语音识别和深度学习技术控制 Tello 无人机的三种语音命令管道的开发和比较评估。其目的是通过直观的语音控制无人机行动来增强人机交互。开发的管道包括(1) 传统的语音到文本(STT),然后是大语言模型(LLM)方法;(2) 直接语音到功能映射模型;(3) 基于暹罗神经网络的系统。每个管道都根据推理时间、准确性、效率和灵活性进行了评估。报告提供了详细的方法、数据集准备和评估指标,对每种管道在不同场景下的优势和适用性进行了全面分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Explaining Deep Learning Embeddings for Speech Emotion Recognition by Predicting Interpretable Acoustic Features ESPnet-EZ: Python-only ESPnet for Easy Fine-tuning and Integration Prevailing Research Areas for Music AI in the Era of Foundation Models Egocentric Speaker Classification in Child-Adult Dyadic Interactions: From Sensing to Computational Modeling The T05 System for The VoiceMOS Challenge 2024: Transfer Learning from Deep Image Classifier to Naturalness MOS Prediction of High-Quality Synthetic Speech
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1