{"title":"Highly Sensitive Hybrid Triboelectric Nanogenerator with Ferris-Wheel-Like Structure for Ocean Wave Energy Harvesting","authors":"Songying Li, Chunjin Chen, Dongxin Guo, Heng Liu, Heng Ning, Guanlin Liu, Lingyu Wan","doi":"10.1002/adsu.202400310","DOIUrl":null,"url":null,"abstract":"<p>Ocean wave energy represents a widely distributed and abundant clean, renewable energy source. However, its efficient harnessing remains a challenge. In this study, a triboelectric-electromagnetic hybrid generator of a Ferris-wheel-like structure (FWS-TEHG) with magnetic repulsion assistance is proposed to effectively enhance the collection of low-frequency and low-amplitude water wave energy. The Ferris-wheel shell and the internal rotator are designed with a phase difference to heighten the swing amplitude, while the introduction of magnetic repulsion augments the motion frequency. The device has demonstrated excellent performance in low-frequency conditions, from laboratory to ocean wave tests. Operating at a frequency of 0.5 Hz and a swing angle of 12° on a six-freedom platform, it lights up 64 LEDs with a power rating of 2 W. Triggered by simulated water waves with a frequency of 1 Hz, the FWS-TEHG charges a 19 mF capacitor at an average charging rate of ≈0.58 W h<sup>−1</sup>, powering a water-level alarm. In oceanic conditions, the FWS-TEHG effectively harvests energy from water waves by exhibiting an output frequency approximately four to five times higher than that of the primary frequency of ocean waves, thus enabling it to power electrical devices such as temperature–humidity meters efficiently. This study provides a valuable reference for advancing the practical application of nanogenerators in natural ocean environments.</p>","PeriodicalId":7294,"journal":{"name":"Advanced Sustainable Systems","volume":"8 11","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sustainable Systems","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adsu.202400310","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ocean wave energy represents a widely distributed and abundant clean, renewable energy source. However, its efficient harnessing remains a challenge. In this study, a triboelectric-electromagnetic hybrid generator of a Ferris-wheel-like structure (FWS-TEHG) with magnetic repulsion assistance is proposed to effectively enhance the collection of low-frequency and low-amplitude water wave energy. The Ferris-wheel shell and the internal rotator are designed with a phase difference to heighten the swing amplitude, while the introduction of magnetic repulsion augments the motion frequency. The device has demonstrated excellent performance in low-frequency conditions, from laboratory to ocean wave tests. Operating at a frequency of 0.5 Hz and a swing angle of 12° on a six-freedom platform, it lights up 64 LEDs with a power rating of 2 W. Triggered by simulated water waves with a frequency of 1 Hz, the FWS-TEHG charges a 19 mF capacitor at an average charging rate of ≈0.58 W h−1, powering a water-level alarm. In oceanic conditions, the FWS-TEHG effectively harvests energy from water waves by exhibiting an output frequency approximately four to five times higher than that of the primary frequency of ocean waves, thus enabling it to power electrical devices such as temperature–humidity meters efficiently. This study provides a valuable reference for advancing the practical application of nanogenerators in natural ocean environments.
期刊介绍:
Advanced Sustainable Systems, a part of the esteemed Advanced portfolio, serves as an interdisciplinary sustainability science journal. It focuses on impactful research in the advancement of sustainable, efficient, and less wasteful systems and technologies. Aligned with the UN's Sustainable Development Goals, the journal bridges knowledge gaps between fundamental research, implementation, and policy-making. Covering diverse topics such as climate change, food sustainability, environmental science, renewable energy, water, urban development, and socio-economic challenges, it contributes to the understanding and promotion of sustainable systems.