On Generalized Preconditioners for Time-Parallel Parabolic Optimal Control

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-07-12 DOI:10.1137/23m1553194
Arne Bouillon, Giovanni Samaey, Karl Meerbergen
{"title":"On Generalized Preconditioners for Time-Parallel Parabolic Optimal Control","authors":"Arne Bouillon, Giovanni Samaey, Karl Meerbergen","doi":"10.1137/23m1553194","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page A2298-A2323, August 2024. <br/> Abstract. The ParaDiag family of algorithms solves differential equations by using preconditioners that can be inverted in parallel through diagonalization. In the context of optimal control of linear parabolic PDEs, the state-of-the-art ParaDiag method is limited to solving self-adjoint problems with a tracking objective. We propose three improvements to the ParaDiag method: the use of alpha-circulant matrices to construct an alternative preconditioner, a generalization of the algorithm for solving non-self-adjoint equations, and the formulation of an algorithm for terminal-cost objectives. We present novel analytic results about the eigenvalues of the preconditioned systems for all discussed ParaDiag algorithms in the case of self-adjoint equations, which proves the favorable properties of the alpha-circulant preconditioner. We use these results to perform a theoretical parallel-scaling analysis of ParaDiag for self-adjoint problems. Numerical tests confirm our findings and suggest that the self-adjoint behavior, which is backed by theory, generalizes to the non-self-adjoint case. We provide a sequential, open-source reference solver in MATLAB for all discussed algorithms. Reproducibility of computational results. This paper has been awarded the “SIAM Reproducibility Badge: Code and data available,” as a recognition that the authors have followed reproducibility principles valued by SISC and the scientific computing community. Code and data that allow readers to reproduce the results in this paper are available at https://gitlab.kuleuven.be/numa/public/pintopt or in the supplementary materials (repro-generalized-paradiag.zip [86.4KB]).","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1553194","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page A2298-A2323, August 2024.
Abstract. The ParaDiag family of algorithms solves differential equations by using preconditioners that can be inverted in parallel through diagonalization. In the context of optimal control of linear parabolic PDEs, the state-of-the-art ParaDiag method is limited to solving self-adjoint problems with a tracking objective. We propose three improvements to the ParaDiag method: the use of alpha-circulant matrices to construct an alternative preconditioner, a generalization of the algorithm for solving non-self-adjoint equations, and the formulation of an algorithm for terminal-cost objectives. We present novel analytic results about the eigenvalues of the preconditioned systems for all discussed ParaDiag algorithms in the case of self-adjoint equations, which proves the favorable properties of the alpha-circulant preconditioner. We use these results to perform a theoretical parallel-scaling analysis of ParaDiag for self-adjoint problems. Numerical tests confirm our findings and suggest that the self-adjoint behavior, which is backed by theory, generalizes to the non-self-adjoint case. We provide a sequential, open-source reference solver in MATLAB for all discussed algorithms. Reproducibility of computational results. This paper has been awarded the “SIAM Reproducibility Badge: Code and data available,” as a recognition that the authors have followed reproducibility principles valued by SISC and the scientific computing community. Code and data that allow readers to reproduce the results in this paper are available at https://gitlab.kuleuven.be/numa/public/pintopt or in the supplementary materials (repro-generalized-paradiag.zip [86.4KB]).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
论时间并行抛物线优化控制的广义预调器
SIAM 科学计算期刊》,第 46 卷第 4 期,第 A2298-A2323 页,2024 年 8 月。 摘要ParaDiag 系列算法通过使用可通过对角化进行并行反演的预条件器来求解微分方程。在线性抛物线 PDE 的优化控制方面,最先进的 ParaDiag 方法仅限于求解具有跟踪目标的自相关问题。我们对 ParaDiag 方法提出了三项改进建议:使用阿尔法圆周矩阵构建替代预处理器、对算法进行泛化以求解非自相交方程,以及针对终端成本目标制定算法。我们提出了关于所有讨论过的 ParaDiag 算法在自相交方程情况下的预处理系统特征值的新分析结果,这证明了阿尔法环形预处理的有利特性。我们利用这些结果对 ParaDiag 的自相交问题进行了理论上的并行缩放分析。数值测试证实了我们的发现,并表明理论支持的自相交行为可以推广到非自相交情况。我们在 MATLAB 中为所有讨论的算法提供了一个顺序、开源的参考求解器。计算结果的可重复性。本文被授予 "SIAM 可重现徽章":代码和数据可用",以表彰作者遵循了 SISC 和科学计算界重视的可重现性原则。读者可在 https://gitlab.kuleuven.be/numa/public/pintopt 或补充材料(repro-generalized-paradiag.zip [86.4KB])中获取代码和数据,以便重现本文中的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1