{"title":"Electron-Beam Modification of Carbon Steel Surface","authors":"A. V. Ionina","doi":"10.1134/s1063784224700555","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Mechanisms of hardening the carbon steel 45 surface after combined treatment have been elucidated. Combined treatment inclucdes electroexplosive boroaluminizing or aluminizing in the presence of silicon carbide and subsequent electron-beam processing. It has been found that the microhardness increases by seven and sic times and the wear resistance improves by 2.5 and 1.7 times, respectively. Under the conditions of dry sliding friction, the wear resistance after electroexplosive boroaluminizing and electron-beam processing increases by 43 times and after electroexplosive aluminizing in the presence of silicon carbide it rises by 12 times. It has been shown that after the combined treatment, a multiphase structure forms in the steel 45 alloying zone. This zone consists of martensite packets and lamellas; retained austenite interlayers; ferrite grains and subgrains; austenite cells; submicrometer SiC particles and Al<sub>4</sub>SiC<sub>4</sub> nanoparticles; and AlB<sub>12</sub>, AlFe<sub>4</sub>, and Fe<sub>3</sub>Si second-phase precipitates. Surface hardening is dude to the formation of a fine-grained nonequilibrium structure containing hardening phases. Electron-beam irradiation smoothes the surface relied, “heals” microcracks, and improves functional properties.</p>","PeriodicalId":783,"journal":{"name":"Technical Physics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1134/s1063784224700555","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Mechanisms of hardening the carbon steel 45 surface after combined treatment have been elucidated. Combined treatment inclucdes electroexplosive boroaluminizing or aluminizing in the presence of silicon carbide and subsequent electron-beam processing. It has been found that the microhardness increases by seven and sic times and the wear resistance improves by 2.5 and 1.7 times, respectively. Under the conditions of dry sliding friction, the wear resistance after electroexplosive boroaluminizing and electron-beam processing increases by 43 times and after electroexplosive aluminizing in the presence of silicon carbide it rises by 12 times. It has been shown that after the combined treatment, a multiphase structure forms in the steel 45 alloying zone. This zone consists of martensite packets and lamellas; retained austenite interlayers; ferrite grains and subgrains; austenite cells; submicrometer SiC particles and Al4SiC4 nanoparticles; and AlB12, AlFe4, and Fe3Si second-phase precipitates. Surface hardening is dude to the formation of a fine-grained nonequilibrium structure containing hardening phases. Electron-beam irradiation smoothes the surface relied, “heals” microcracks, and improves functional properties.
期刊介绍:
Technical Physics is a journal that contains practical information on all aspects of applied physics, especially instrumentation and measurement techniques. Particular emphasis is put on plasma physics and related fields such as studies of charged particles in electromagnetic fields, synchrotron radiation, electron and ion beams, gas lasers and discharges. Other journal topics are the properties of condensed matter, including semiconductors, superconductors, gases, liquids, and different materials.