{"title":"Carnosine supplementation in cryopreservation solution improved frozen-thawed bovine embryo viability","authors":"Toshimichi ISHII, Kento MORI-KOBAYASHI, Sho NAKAMURA, Satoshi OHKURA, Shuichi MATSUYAMA","doi":"10.1262/jrd.2023-071","DOIUrl":null,"url":null,"abstract":"</p><p>Cryopreservation adversely affects embryo quality and viability <i>in vitro</i>.<i></i>We investigated the effects of cryopreservation solutions supplemented with the antioxidant carnosine on frozen-thawed bovine embryo viability. Bovine blastocysts were produced <i>in vitro</i> and cryopreserved using slow freezing. The rates of re-expanded and hatched blastocysts in the 50 μg/ml carnosine-supplemented group at 4, 24, and 48 h after thawing were higher than those in the control (P<i></i>< 0.05) group. In frozen-thawed embryos, cryopreservation solution supplemented with carnosine (50 μg/ml) significantly reduced reactive oxygen species (ROS) production<i></i>(P < 0.05), decreased TUNEL-positive apoptotic cells (P<i></i>< 0.05), and increased the mRNA expression of<i> BCL2 </i>(P<i></i>< 0.05), an apoptosis suppressor gene. The expression of translocase of outer mitochondrial membrane 20 (TOMM20), which is involved in protein mitochondrial transport, in the carnosine (50 μg/ml)-treated embryos was significantly higher than that in the control group (P < 0.05). ATP production in frozen-thawed embryos in the 50 μg/ml carnosine-supplemented group was significantly higher than that in the control group (P<i></i>< 0.05), however no significant difference in the total number of cells per embryo among the groups was observed. These results suggest that supplementing the cryopreservation solution with carnosine can improve the viability of frozen-thawed bovine embryos by reducing oxidative damage.</p>\n<p></p>\n<img alt=\"\" src=\"https://www.jstage.jst.go.jp/pub/jrd/advpub/0/advpub_2023-071/figure/advpub_2023-071.png\"/>\nGraphical Abstract <span style=\"padding-left:5px;\">Fullsize Image</span>","PeriodicalId":16942,"journal":{"name":"Journal of Reproduction and Development","volume":"50 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Reproduction and Development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1262/jrd.2023-071","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Cryopreservation adversely affects embryo quality and viability in vitro.We investigated the effects of cryopreservation solutions supplemented with the antioxidant carnosine on frozen-thawed bovine embryo viability. Bovine blastocysts were produced in vitro and cryopreserved using slow freezing. The rates of re-expanded and hatched blastocysts in the 50 μg/ml carnosine-supplemented group at 4, 24, and 48 h after thawing were higher than those in the control (P< 0.05) group. In frozen-thawed embryos, cryopreservation solution supplemented with carnosine (50 μg/ml) significantly reduced reactive oxygen species (ROS) production(P < 0.05), decreased TUNEL-positive apoptotic cells (P< 0.05), and increased the mRNA expression of BCL2 (P< 0.05), an apoptosis suppressor gene. The expression of translocase of outer mitochondrial membrane 20 (TOMM20), which is involved in protein mitochondrial transport, in the carnosine (50 μg/ml)-treated embryos was significantly higher than that in the control group (P < 0.05). ATP production in frozen-thawed embryos in the 50 μg/ml carnosine-supplemented group was significantly higher than that in the control group (P< 0.05), however no significant difference in the total number of cells per embryo among the groups was observed. These results suggest that supplementing the cryopreservation solution with carnosine can improve the viability of frozen-thawed bovine embryos by reducing oxidative damage.
期刊介绍:
Journal of Reproduction and Development (JRD) is the
official journal of the Society for Reproduction and Development,
published bimonthly, and welcomes original articles. JRD
provides free full-text access of all the published articles on
the web. The functions of the journal are managed by Editorial
Board Members, such as the Editor-in-Chief, Co-Editor-inChief, Managing Editors and Editors. All manuscripts are
peer-reviewed critically by two or more reviewers. Acceptance
is based on scientific content and presentation of the materials.
The Editors select reviewers and correspond with authors. Final
decisions about acceptance or rejection of manuscripts are made
by the Editor-in-Chief and Co-Editor-in-Chief.