{"title":"Domain‐Adaptive Power Profiling Analysis Strategy for the Metaverse","authors":"Xiang Li, Ning Yang, Weifeng Liu, Aidong Chen, Yanlong Zhang, Shuo Wang, Jing Zhou","doi":"10.1002/nem.2288","DOIUrl":null,"url":null,"abstract":"In the surge of the digital era, the metaverse, as a groundbreaking concept, has become a focal point in the technology sector. It is reshaping human work and life patterns, carving out a new realm of virtual and real interaction. However, the rapid development of the metaverse brings along novel challenges in security and privacy. In this multifaceted and complex technological environment, data protection is of paramount importance. The innovative capabilities of high‐end devices and functions in the metaverse, owing to advanced integrated circuit technology, face unique threats from side‐channel analysis (SCA), potentially leading to breaches in user privacy. Addressing the issue of domain differences caused by different hardware devices, which impact the generalizability of the analysis model and the accuracy of analysis, this paper proposes a strategy of portability power profiling analysis (PPPA). Combining domain adaptation and deep learning techniques, it models and calibrates the domain differences between the profiling and target devices, enhancing the model's adaptability in different device environments. Experiments show that our method can recover the correct key with as few as 389 power traces, effectively recovering keys across different devices. This paper underscores the effectiveness of cross‐device SCA, focusing on the adaptability and robustness of analysis models in different hardware environments, thereby enhancing the security of user data privacy in the metaverse environment.","PeriodicalId":14154,"journal":{"name":"International Journal of Network Management","volume":"125 20 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Network Management","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/nem.2288","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In the surge of the digital era, the metaverse, as a groundbreaking concept, has become a focal point in the technology sector. It is reshaping human work and life patterns, carving out a new realm of virtual and real interaction. However, the rapid development of the metaverse brings along novel challenges in security and privacy. In this multifaceted and complex technological environment, data protection is of paramount importance. The innovative capabilities of high‐end devices and functions in the metaverse, owing to advanced integrated circuit technology, face unique threats from side‐channel analysis (SCA), potentially leading to breaches in user privacy. Addressing the issue of domain differences caused by different hardware devices, which impact the generalizability of the analysis model and the accuracy of analysis, this paper proposes a strategy of portability power profiling analysis (PPPA). Combining domain adaptation and deep learning techniques, it models and calibrates the domain differences between the profiling and target devices, enhancing the model's adaptability in different device environments. Experiments show that our method can recover the correct key with as few as 389 power traces, effectively recovering keys across different devices. This paper underscores the effectiveness of cross‐device SCA, focusing on the adaptability and robustness of analysis models in different hardware environments, thereby enhancing the security of user data privacy in the metaverse environment.
期刊介绍:
Modern computer networks and communication systems are increasing in size, scope, and heterogeneity. The promise of a single end-to-end technology has not been realized and likely never will occur. The decreasing cost of bandwidth is increasing the possible applications of computer networks and communication systems to entirely new domains. Problems in integrating heterogeneous wired and wireless technologies, ensuring security and quality of service, and reliably operating large-scale systems including the inclusion of cloud computing have all emerged as important topics. The one constant is the need for network management. Challenges in network management have never been greater than they are today. The International Journal of Network Management is the forum for researchers, developers, and practitioners in network management to present their work to an international audience. The journal is dedicated to the dissemination of information, which will enable improved management, operation, and maintenance of computer networks and communication systems. The journal is peer reviewed and publishes original papers (both theoretical and experimental) by leading researchers, practitioners, and consultants from universities, research laboratories, and companies around the world. Issues with thematic or guest-edited special topics typically occur several times per year. Topic areas for the journal are largely defined by the taxonomy for network and service management developed by IFIP WG6.6, together with IEEE-CNOM, the IRTF-NMRG and the Emanics Network of Excellence.