Latent Spaces Enable Transformer-Based Dose Prediction in Complex Radiotherapy Plans

Edward Wang, Ryan Au, Pencilla Lang, Sarah A. Mattonen
{"title":"Latent Spaces Enable Transformer-Based Dose Prediction in Complex Radiotherapy Plans","authors":"Edward Wang, Ryan Au, Pencilla Lang, Sarah A. Mattonen","doi":"arxiv-2407.08650","DOIUrl":null,"url":null,"abstract":"Evidence is accumulating in favour of using stereotactic ablative body\nradiotherapy (SABR) to treat multiple cancer lesions in the lung. Multi-lesion\nlung SABR plans are complex and require significant resources to create. In\nthis work, we propose a novel two-stage latent transformer framework (LDFormer)\nfor dose prediction of lung SABR plans with varying numbers of lesions. In the\nfirst stage, patient anatomical information and the dose distribution are\nencoded into a latent space. In the second stage, a transformer learns to\npredict the dose latent from the anatomical latents. Causal attention is\nmodified to adapt to different numbers of lesions. LDFormer outperforms a\nstate-of-the-art generative adversarial network on dose conformality in and\naround lesions, and the performance gap widens when considering overlapping\nlesions. LDFormer generates predictions of 3-D dose distributions in under 30s\non consumer hardware, and has the potential to assist physicians with clinical\ndecision making, reduce resource costs, and accelerate treatment planning.","PeriodicalId":501378,"journal":{"name":"arXiv - PHYS - Medical Physics","volume":"81 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Medical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.08650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Evidence is accumulating in favour of using stereotactic ablative body radiotherapy (SABR) to treat multiple cancer lesions in the lung. Multi-lesion lung SABR plans are complex and require significant resources to create. In this work, we propose a novel two-stage latent transformer framework (LDFormer) for dose prediction of lung SABR plans with varying numbers of lesions. In the first stage, patient anatomical information and the dose distribution are encoded into a latent space. In the second stage, a transformer learns to predict the dose latent from the anatomical latents. Causal attention is modified to adapt to different numbers of lesions. LDFormer outperforms a state-of-the-art generative adversarial network on dose conformality in and around lesions, and the performance gap widens when considering overlapping lesions. LDFormer generates predictions of 3-D dose distributions in under 30s on consumer hardware, and has the potential to assist physicians with clinical decision making, reduce resource costs, and accelerate treatment planning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
潜伏空间使复杂放疗计划中基于变压器的剂量预测成为可能
越来越多的证据表明,使用立体定向烧蚀体外放射治疗(SABR)可以治疗肺部的多个癌症病灶。肺部多病灶 SABR 计划非常复杂,需要大量资源来创建。在这项工作中,我们提出了一种新颖的两阶段潜变框架(LDFormer),用于对不同病灶数量的肺部 SABR 计划进行剂量预测。在第一阶段,患者的解剖信息和剂量分布被编码到一个潜空间中。在第二阶段,转换器从解剖潜变量中学习预测剂量潜变量。对因果注意进行修改,以适应不同数量的病变。在病灶内和病灶周围的剂量一致性方面,LDFormer优于最先进的生成式对抗网络,当考虑到重叠病灶时,性能差距拉大。LDFormer 能在不到 30 秒的时间内生成三维剂量分布的预测结果,它有望帮助医生做出临床决策、降低资源成本并加快治疗计划的制定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental Learning of a Hyperelastic Behavior with a Physics-Augmented Neural Network Modeling water radiolysis with Geant4-DNA: Impact of the temporal structure of the irradiation pulse under oxygen conditions Fast Spot Order Optimization to Increase Dose Rates in Scanned Particle Therapy FLASH Treatments The i-TED Compton Camera Array for real-time boron imaging and determination during treatments in Boron Neutron Capture Therapy OpenDosimeter: Open Hardware Personal X-ray Dosimeter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1