Dynamic Response Analysis of Quasi-Saturated Foundation Half-Space under Strip Loading

IF 0.6 4区 工程技术 Q4 MECHANICS Mechanics of Solids Pub Date : 2024-07-12 DOI:10.1134/S0025654424600053
Bin Hou, Wenwen Li
{"title":"Dynamic Response Analysis of Quasi-Saturated Foundation Half-Space under Strip Loading","authors":"Bin Hou,&nbsp;Wenwen Li","doi":"10.1134/S0025654424600053","DOIUrl":null,"url":null,"abstract":"<p>In order to investigate the differences between the dynamic response problems of quasi-saturated and saturated foundations. Based on the theory of quasi-saturated porous media, the dynamic response problem of a semi-infinite quasi-saturated soil foundation is investigated. Using the Fourier integral transform, the computational lexicon of the dynamic response of a quasi-saturated soil foundation under bar simple harmonic loading on the ground surface is established according to the Helmholtz vector decomposition principle. The effects of saturation degree and loading frequency on soil displacement, stress, and pore water pressure in the quasi-saturated foundation were analyzed. The results show that the loading frequency and the degree of saturation greatly influence the dynamic response of the quasi-saturated soil. With the increase of saturation, the surface displacement magnitude and positive stress magnitude increase, especially when <i>S</i><sub><i>r</i></sub> = 1, the surface displacement magnitude and positive stress magnitude change significantly, but the value of shear stress is not sensitive to the change of saturation. Pore water pressure increases with saturation and is most significantly affected by saturation relative to stress and displacement.</p>","PeriodicalId":697,"journal":{"name":"Mechanics of Solids","volume":"59 2","pages":"899 - 908"},"PeriodicalIF":0.6000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Solids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0025654424600053","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

In order to investigate the differences between the dynamic response problems of quasi-saturated and saturated foundations. Based on the theory of quasi-saturated porous media, the dynamic response problem of a semi-infinite quasi-saturated soil foundation is investigated. Using the Fourier integral transform, the computational lexicon of the dynamic response of a quasi-saturated soil foundation under bar simple harmonic loading on the ground surface is established according to the Helmholtz vector decomposition principle. The effects of saturation degree and loading frequency on soil displacement, stress, and pore water pressure in the quasi-saturated foundation were analyzed. The results show that the loading frequency and the degree of saturation greatly influence the dynamic response of the quasi-saturated soil. With the increase of saturation, the surface displacement magnitude and positive stress magnitude increase, especially when Sr = 1, the surface displacement magnitude and positive stress magnitude change significantly, but the value of shear stress is not sensitive to the change of saturation. Pore water pressure increases with saturation and is most significantly affected by saturation relative to stress and displacement.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带状载荷下准饱和地基半空间的动态响应分析
摘要 为了研究准饱和地基与饱和地基动力响应问题的差异。基于准饱和多孔介质理论,研究了半无限准饱和土地基的动力响应问题。利用傅立叶积分变换,根据亥姆霍兹矢量分解原理,建立了准饱和地基在地表条形简谐荷载作用下的动力响应计算词典。分析了饱和度和加载频率对准饱和地基土体位移、应力和孔隙水压力的影响。结果表明,加载频率和饱和度对准饱和土的动力响应影响很大。随着饱和度的增加,地表位移量级和正应力量级增大,特别是当 Sr = 1 时,地表位移量级和正应力量级变化显著,但剪应力值对饱和度变化不敏感。孔隙水压力随饱和度增加而增加,相对于应力和位移,饱和度对孔隙水压力的影响最大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mechanics of Solids
Mechanics of Solids 医学-力学
CiteScore
1.20
自引率
42.90%
发文量
112
审稿时长
6-12 weeks
期刊介绍: Mechanics of Solids publishes articles in the general areas of dynamics of particles and rigid bodies and the mechanics of deformable solids. The journal has a goal of being a comprehensive record of up-to-the-minute research results. The journal coverage is vibration of discrete and continuous systems; stability and optimization of mechanical systems; automatic control theory; dynamics of multiple body systems; elasticity, viscoelasticity and plasticity; mechanics of composite materials; theory of structures and structural stability; wave propagation and impact of solids; fracture mechanics; micromechanics of solids; mechanics of granular and geological materials; structure-fluid interaction; mechanical behavior of materials; gyroscopes and navigation systems; and nanomechanics. Most of the articles in the journal are theoretical and analytical. They present a blend of basic mechanics theory with analysis of contemporary technological problems.
期刊最新文献
Proper Motions of the Flat Structure of Cosserat Type Expansion of a Spherical Cavity in an Infinite Dilatant Medium Obeying the Drucker–Prager Yield Criterion and a Non-Associated Plastic Flow Rule Investigation of Thermoelastic behavior in a Three-Dimensional Homogeneous Half-Space with Reference Temperature-Dependent Material Properties Dynamic modeling and Multi-Objective Optimization of a 3DOF Reconfigurable Parallel Robot Nonlinear Poro-Visco-Thermal Vibrations in Piezo-Thermoelastic Hygroscopic Sandwich Shells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1