{"title":"Human Aortic Stenotic Valve-Derived Extracellular Vesicles Induce Endothelial Dysfunction and Thrombogenicity Through AT1R/NADPH Oxidases/SGLT2 Pro-Oxidant Pathway","authors":"Sandy Hmadeh PhD , Antonin Trimaille MD, MSc , Kensuke Matsushita MD, PhD , Benjamin Marchandot MD , Adrien Carmona MD , Fatiha Zobairi BSc , Chisato Sato MD, PhD , Michel Kindo MD, PhD , Tam Minh Hoang MD , Florence Toti PhD , Kazem Zibara PhD , Eva Hamade PhD , Valérie Schini-Kerth PhD , Gilles Kauffenstein PhD , Olivier Morel MD, PhD","doi":"10.1016/j.jacbts.2024.02.012","DOIUrl":null,"url":null,"abstract":"<div><p>Pathological tissues release a variety of factors, including extracellular vesicles (EVs) shed by activated or apoptotic cells. EVs trapped within the native pathological valves may act as key mediators of valve thrombosis. Human aortic stenosis EVs promote activation of valvular endothelial cells, leading to endothelial dysfunction, and proadhesive and procoagulant responses.</p></div>","PeriodicalId":14831,"journal":{"name":"JACC: Basic to Translational Science","volume":"9 7","pages":"Pages 845-864"},"PeriodicalIF":8.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2452302X24000901/pdfft?md5=01e109e05e1c49392f43b2d6319c6c96&pid=1-s2.0-S2452302X24000901-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACC: Basic to Translational Science","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452302X24000901","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Pathological tissues release a variety of factors, including extracellular vesicles (EVs) shed by activated or apoptotic cells. EVs trapped within the native pathological valves may act as key mediators of valve thrombosis. Human aortic stenosis EVs promote activation of valvular endothelial cells, leading to endothelial dysfunction, and proadhesive and procoagulant responses.
期刊介绍:
JACC: Basic to Translational Science is an open access journal that is part of the renowned Journal of the American College of Cardiology (JACC). It focuses on advancing the field of Translational Cardiovascular Medicine and aims to accelerate the translation of new scientific discoveries into therapies that improve outcomes for patients with or at risk for Cardiovascular Disease. The journal covers thematic areas such as pre-clinical research, clinical trials, personalized medicine, novel drugs, devices, and biologics, proteomics, genomics, and metabolomics, as well as early phase clinical trial methodology.