Radiosynthesis and Evaluation of 11C-Labeled Isoindolone-Based Positive Allosteric Modulators for Positron Emission Tomography Imaging of Metabotropic Glutamate Receptor 2
Yinlong Li, Kenneth Dahl, Peter Johnström, Katarina Varnäs, Lars Farde, Christer Halldin, Amy Medd, Donna Maier, Mark E. Powell, Jiahui Chen, Richard Van, Jimmy Patel, Ahmad Chaudhary, Yabiao Gao, Zhendong Song, Ahmed Haider, Yihan Shao, Charles S. Elmore, Steven Liang, Magnus Schou
{"title":"Radiosynthesis and Evaluation of 11C-Labeled Isoindolone-Based Positive Allosteric Modulators for Positron Emission Tomography Imaging of Metabotropic Glutamate Receptor 2","authors":"Yinlong Li, Kenneth Dahl, Peter Johnström, Katarina Varnäs, Lars Farde, Christer Halldin, Amy Medd, Donna Maier, Mark E. Powell, Jiahui Chen, Richard Van, Jimmy Patel, Ahmad Chaudhary, Yabiao Gao, Zhendong Song, Ahmed Haider, Yihan Shao, Charles S. Elmore, Steven Liang, Magnus Schou","doi":"10.1021/acsptsci.4c00261","DOIUrl":null,"url":null,"abstract":"The metabotropic glutamate receptor 2 (mGluR<sub>2</sub>) has emerged as a potential therapeutic target for the treatment of various neurological diseases, prompting substantial interest in the development of mGluR<sub>2</sub>-targeted drug candidates. As part of our medicinal chemistry program, we synthesized a series of isoindolone derivatives and assessed their potential as mGluR<sub>2</sub> positive allosteric modulators (PAMs). Notably, AZ12559322 exhibited high affinity (<i>K</i><sub>i</sub> mGluR<sub>2</sub> = 1.31 nM) and an excellent in vitro binding specificity of 89% while demonstrating selectivity over other mGluR subtypes (>4000-fold). Autoradiography with the radiolabeled counterpart, [<sup>3</sup>H]AZ12559322, revealed a heterogeneous accumulation with the highest binding in mGluR<sub>2</sub>-rich brain regions. Radioligand binding was significantly reduced by pretreatment with nonradioactive mGluR<sub>2</sub> PAMs in brains of rats and nonhuman primates. Although positron emission tomography imaging of [<sup>11</sup>C]AZ12559322 (<b>6a</b>) revealed low brain uptake in a nonhuman primate, this study provides valuable guidance to further design novel isoindolone-based mGluR<sub>2</sub> PAMs with improved brain exposure.","PeriodicalId":501473,"journal":{"name":"ACS Pharmacology & Translational Science","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Pharmacology & Translational Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsptsci.4c00261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The metabotropic glutamate receptor 2 (mGluR2) has emerged as a potential therapeutic target for the treatment of various neurological diseases, prompting substantial interest in the development of mGluR2-targeted drug candidates. As part of our medicinal chemistry program, we synthesized a series of isoindolone derivatives and assessed their potential as mGluR2 positive allosteric modulators (PAMs). Notably, AZ12559322 exhibited high affinity (Ki mGluR2 = 1.31 nM) and an excellent in vitro binding specificity of 89% while demonstrating selectivity over other mGluR subtypes (>4000-fold). Autoradiography with the radiolabeled counterpart, [3H]AZ12559322, revealed a heterogeneous accumulation with the highest binding in mGluR2-rich brain regions. Radioligand binding was significantly reduced by pretreatment with nonradioactive mGluR2 PAMs in brains of rats and nonhuman primates. Although positron emission tomography imaging of [11C]AZ12559322 (6a) revealed low brain uptake in a nonhuman primate, this study provides valuable guidance to further design novel isoindolone-based mGluR2 PAMs with improved brain exposure.