Equivalent linear model for seismic damage evaluation of single-degree-of-freedom systems representing reinforced concrete structures considering cyclic degradation behavior

IF 2.6 2区 工程技术 Q2 ENGINEERING, CIVIL Earthquake Engineering and Engineering Vibration Pub Date : 2024-07-13 DOI:10.1007/s11803-024-2262-8
Lulu Yan, Ding-Hao Yu
{"title":"Equivalent linear model for seismic damage evaluation of single-degree-of-freedom systems representing reinforced concrete structures considering cyclic degradation behavior","authors":"Lulu Yan, Ding-Hao Yu","doi":"10.1007/s11803-024-2262-8","DOIUrl":null,"url":null,"abstract":"<p>In this study, a novel equivalent damping ratio model that is suitable for reinforced concrete (RC) structures considering cyclic degradation behavior is developed, and a new equivalent linearization analysis method for implementing the proposed equivalent damping ratio model for use in seismic damage evaluation is presented. To this end, Ibarra’s peak-oriented model, which incorporates an energy-based degradation rule, is selected for representing hysteretic behavior of RC structure, and the optimized equivalent damping for predicting the maximum displacement response is presented by using the empirical method, in which the effect of cyclic degradation is considered. Moreover, the relationship between the hysteretic energy dissipation of the inelastic system and the elastic strain energy of the equivalent linear system is established so that the proposed equivalent linear system can be directly integrated with the Park-Ang seismic model to implement seismic damage evaluation. Due to the simplicity of the equivalent linearization method, the proposed method provides an efficient and reliable way of obtaining comprehensive insight into the seismic performance of RC structures. The verification demonstrates the validity of the proposed method.</p>","PeriodicalId":11416,"journal":{"name":"Earthquake Engineering and Engineering Vibration","volume":"90 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Engineering and Engineering Vibration","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11803-024-2262-8","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, a novel equivalent damping ratio model that is suitable for reinforced concrete (RC) structures considering cyclic degradation behavior is developed, and a new equivalent linearization analysis method for implementing the proposed equivalent damping ratio model for use in seismic damage evaluation is presented. To this end, Ibarra’s peak-oriented model, which incorporates an energy-based degradation rule, is selected for representing hysteretic behavior of RC structure, and the optimized equivalent damping for predicting the maximum displacement response is presented by using the empirical method, in which the effect of cyclic degradation is considered. Moreover, the relationship between the hysteretic energy dissipation of the inelastic system and the elastic strain energy of the equivalent linear system is established so that the proposed equivalent linear system can be directly integrated with the Park-Ang seismic model to implement seismic damage evaluation. Due to the simplicity of the equivalent linearization method, the proposed method provides an efficient and reliable way of obtaining comprehensive insight into the seismic performance of RC structures. The verification demonstrates the validity of the proposed method.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑循环退化行为的钢筋混凝土结构单自由度系统震害评估等效线性模型
本研究开发了一种适用于考虑周期退化行为的钢筋混凝土(RC)结构的新型等效阻尼比模型,并提出了一种新的等效线性化分析方法,用于将所提出的等效阻尼比模型应用于震害评估。为此,选择了包含基于能量的退化规则的 Ibarra 峰值导向模型来表示 RC 结构的滞回行为,并通过使用经验方法提出了预测最大位移响应的优化等效阻尼,其中考虑了循环退化的影响。此外,还建立了非弹性系统的滞回耗能与等效线性系统的弹性应变能之间的关系,从而使所提出的等效线性系统可以直接与 Park-Ang 地震模型相结合,以实施震害评估。由于等效线性化方法的简便性,所提出的方法为全面了解 RC 结构的抗震性能提供了一种高效可靠的途径。验证证明了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.70
自引率
21.40%
发文量
1057
审稿时长
9 months
期刊介绍: Earthquake Engineering and Engineering Vibration is an international journal sponsored by the Institute of Engineering Mechanics (IEM), China Earthquake Administration in cooperation with the Multidisciplinary Center for Earthquake Engineering Research (MCEER), and State University of New York at Buffalo. It promotes scientific exchange between Chinese and foreign scientists and engineers, to improve the theory and practice of earthquake hazards mitigation, preparedness, and recovery. The journal focuses on earthquake engineering in all aspects, including seismology, tsunamis, ground motion characteristics, soil and foundation dynamics, wave propagation, probabilistic and deterministic methods of dynamic analysis, behavior of structures, and methods for earthquake resistant design and retrofit of structures that are germane to practicing engineers. It includes seismic code requirements, as well as supplemental energy dissipation, base isolation, and structural control.
期刊最新文献
Field survey and analysis on near-fault severely damaged high-speed railway bridge in 2022 M6.9 Menyuan earthquake Physics-based seismic analysis of ancient wood structure: fault-to-structure simulation Nonlinear vibration of Timoshenko FG porous sandwich beams subjected to a harmonic axial load Wave propagation of a functionally graded plate via integral variables with a hyperbolic arcsine function Optimal design for rubber concrete layered periodic foundations based on the analytical approximations of band gaps and mapping relations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1