{"title":"Forecasting short- and medium-term streamflow using stacked ensemble models and different meta-learners","authors":"Francesco Granata, Fabio Di Nunno","doi":"10.1007/s00477-024-02760-w","DOIUrl":null,"url":null,"abstract":"<p>Streamflow forecasting holds a pivotal role in the effective management of water resources, flood control, hydropower generation, agricultural planning, and environmental conservation.</p><p>This study assessed the effectiveness of a stacked Multilayer Perceptron-Random Forest (MLP-RF) ensemble model for short- to medium-term (7 to 15 days ahead) daily streamflow forecasts in the UK. The stacked model combines MLP and RF, enhancing generalization by capturing complex nonlinear relationships and robustness to noisy data. Stacking reduces bias and variance by aggregating predictions and addressing differing sources of bias and variance in MLP and RF. Furthermore, this ensemble model is computationally inexpensive. The study also examined the impact of different meta-learner algorithms, Elastic Net (EN), Isotonic Regression (IR), Pace Regression (PR), and Radial Basis Function (RBF) Neural Networks, on model performance.</p><p>For 1-day ahead forecasts, all models performed well (Kling Gupta efficiency, KGE, from 0.921 to 0.985, mean absolute percentage error, MAPE, from 3.59 to 13.02%), with minimal impact from the choice of meta-learner. At 7-day ahead forecasts, satisfactory results were obtained (KGE from 0.876 to 0.963, MAPE from 11.53 to 24.55%), while at the 15-day horizon, accuracy remained reasonable (KGE from 0.82 to 0.961, MAPE from 18.31 to 34.38%). The RBF meta-learner generally led to more accurate predictions, particularly affecting low and peak flow rates. RBF consistently outperformed in predicting low flow rates, while EN excelled in predicting flood flow rates in many cases. For estimating total discharged water volume, all models exhibited low relative error (< 0.08).</p>","PeriodicalId":21987,"journal":{"name":"Stochastic Environmental Research and Risk Assessment","volume":"15 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Environmental Research and Risk Assessment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s00477-024-02760-w","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Streamflow forecasting holds a pivotal role in the effective management of water resources, flood control, hydropower generation, agricultural planning, and environmental conservation.
This study assessed the effectiveness of a stacked Multilayer Perceptron-Random Forest (MLP-RF) ensemble model for short- to medium-term (7 to 15 days ahead) daily streamflow forecasts in the UK. The stacked model combines MLP and RF, enhancing generalization by capturing complex nonlinear relationships and robustness to noisy data. Stacking reduces bias and variance by aggregating predictions and addressing differing sources of bias and variance in MLP and RF. Furthermore, this ensemble model is computationally inexpensive. The study also examined the impact of different meta-learner algorithms, Elastic Net (EN), Isotonic Regression (IR), Pace Regression (PR), and Radial Basis Function (RBF) Neural Networks, on model performance.
For 1-day ahead forecasts, all models performed well (Kling Gupta efficiency, KGE, from 0.921 to 0.985, mean absolute percentage error, MAPE, from 3.59 to 13.02%), with minimal impact from the choice of meta-learner. At 7-day ahead forecasts, satisfactory results were obtained (KGE from 0.876 to 0.963, MAPE from 11.53 to 24.55%), while at the 15-day horizon, accuracy remained reasonable (KGE from 0.82 to 0.961, MAPE from 18.31 to 34.38%). The RBF meta-learner generally led to more accurate predictions, particularly affecting low and peak flow rates. RBF consistently outperformed in predicting low flow rates, while EN excelled in predicting flood flow rates in many cases. For estimating total discharged water volume, all models exhibited low relative error (< 0.08).
期刊介绍:
Stochastic Environmental Research and Risk Assessment (SERRA) will publish research papers, reviews and technical notes on stochastic and probabilistic approaches to environmental sciences and engineering, including interactions of earth and atmospheric environments with people and ecosystems. The basic idea is to bring together research papers on stochastic modelling in various fields of environmental sciences and to provide an interdisciplinary forum for the exchange of ideas, for communicating on issues that cut across disciplinary barriers, and for the dissemination of stochastic techniques used in different fields to the community of interested researchers. Original contributions will be considered dealing with modelling (theoretical and computational), measurements and instrumentation in one or more of the following topical areas:
- Spatiotemporal analysis and mapping of natural processes.
- Enviroinformatics.
- Environmental risk assessment, reliability analysis and decision making.
- Surface and subsurface hydrology and hydraulics.
- Multiphase porous media domains and contaminant transport modelling.
- Hazardous waste site characterization.
- Stochastic turbulence and random hydrodynamic fields.
- Chaotic and fractal systems.
- Random waves and seafloor morphology.
- Stochastic atmospheric and climate processes.
- Air pollution and quality assessment research.
- Modern geostatistics.
- Mechanisms of pollutant formation, emission, exposure and absorption.
- Physical, chemical and biological analysis of human exposure from single and multiple media and routes; control and protection.
- Bioinformatics.
- Probabilistic methods in ecology and population biology.
- Epidemiological investigations.
- Models using stochastic differential equations stochastic or partial differential equations.
- Hazardous waste site characterization.