Filling the gaps in peptide maps with a platform assay for top-down characterization of purified protein samples.

IF 3.4 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Proteomics Pub Date : 2024-07-14 DOI:10.1002/pmic.202400036
Aaron O Bailey, Kenneth R Durbin, Matthew T Robey, Lee K Palmer, William K Russell
{"title":"Filling the gaps in peptide maps with a platform assay for top-down characterization of purified protein samples.","authors":"Aaron O Bailey, Kenneth R Durbin, Matthew T Robey, Lee K Palmer, William K Russell","doi":"10.1002/pmic.202400036","DOIUrl":null,"url":null,"abstract":"<p><p>Liquid chromatography-mass spectrometry (LC-MS) intact mass analysis and LC-MS/MS peptide mapping are decisional assays for developing biological drugs and other commercial protein products. Certain PTM types, such as truncation and oxidation, increase the difficulty of precise proteoform characterization owing to inherent limitations in peptide and intact protein analyses. Top-down MS (TDMS) can resolve this ambiguity via fragmentation of specific proteoforms. We leveraged the strengths of flow-programmed (fp) denaturing online buffer exchange (dOBE) chromatography, including robust automation, relatively high ESI sensitivity, and long MS/MS window time, to support a TDMS platform for industrial protein characterization. We tested data-dependent (DDA) and targeted strategies using 14 different MS/MS scan types featuring combinations of collisional- and electron-based fragmentation as well as proton transfer charge reduction. This large, focused dataset was processed using a new software platform, named TDAcquireX, that improves proteoform characterization through TDMS data aggregation. A DDA-based workflow provided objective identification of αLac truncation proteoforms with a two-termini clipping search. A targeted TDMS workflow facilitated the characterization of αLac oxidation positional isomers. This strategy relied on using sliding window-based fragment ion deconvolution to generate composite proteoform spectral match (cPrSM) results amenable to fragment noise filtering, which is a fundamental enhancement relevant to TDMS applications generally.</p>","PeriodicalId":224,"journal":{"name":"Proteomics","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pmic.202400036","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Liquid chromatography-mass spectrometry (LC-MS) intact mass analysis and LC-MS/MS peptide mapping are decisional assays for developing biological drugs and other commercial protein products. Certain PTM types, such as truncation and oxidation, increase the difficulty of precise proteoform characterization owing to inherent limitations in peptide and intact protein analyses. Top-down MS (TDMS) can resolve this ambiguity via fragmentation of specific proteoforms. We leveraged the strengths of flow-programmed (fp) denaturing online buffer exchange (dOBE) chromatography, including robust automation, relatively high ESI sensitivity, and long MS/MS window time, to support a TDMS platform for industrial protein characterization. We tested data-dependent (DDA) and targeted strategies using 14 different MS/MS scan types featuring combinations of collisional- and electron-based fragmentation as well as proton transfer charge reduction. This large, focused dataset was processed using a new software platform, named TDAcquireX, that improves proteoform characterization through TDMS data aggregation. A DDA-based workflow provided objective identification of αLac truncation proteoforms with a two-termini clipping search. A targeted TDMS workflow facilitated the characterization of αLac oxidation positional isomers. This strategy relied on using sliding window-based fragment ion deconvolution to generate composite proteoform spectral match (cPrSM) results amenable to fragment noise filtering, which is a fundamental enhancement relevant to TDMS applications generally.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用自上而下表征纯化蛋白质样品的平台测定法填补肽图空白。
液相色谱-质谱(LC-MS)完整质量分析和 LC-MS/MS 多肽图谱是开发生物药物和其他商业蛋白质产品的决定性检测方法。由于肽和完整蛋白质分析的固有局限性,某些 PTM 类型(如截断和氧化)增加了精确蛋白质表征的难度。自上而下质谱(TDMS)可通过对特定蛋白形式的片段分析来解决这一模糊问题。我们利用流动编程(fp)变性在线缓冲液交换(dOBE)色谱法的优势,包括强大的自动化、相对较高的 ESI 灵敏度和较长的 MS/MS 窗口时间,来支持用于工业蛋白质表征的 TDMS 平台。我们使用 14 种不同的 MS/MS 扫描类型测试了数据依赖性 (DDA) 和目标策略,这些扫描类型结合了碰撞和电子碎片以及质子传递电荷还原。该软件通过 TDMS 数据聚合改进了蛋白质形态表征。基于 DDA 的工作流程通过双端剪切搜索客观地鉴定了 αLac 截断蛋白形式。有针对性的 TDMS 工作流程有助于鉴定 αLac 氧化位置异构体。该策略依赖于使用基于滑动窗口的片段离子解卷积来生成适合片段噪声过滤的复合蛋白形式光谱匹配(cPrSM)结果,这是 TDMS 应用的一项基本改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Proteomics
Proteomics 生物-生化研究方法
CiteScore
6.30
自引率
5.90%
发文量
193
审稿时长
3 months
期刊介绍: PROTEOMICS is the premier international source for information on all aspects of applications and technologies, including software, in proteomics and other "omics". The journal includes but is not limited to proteomics, genomics, transcriptomics, metabolomics and lipidomics, and systems biology approaches. Papers describing novel applications of proteomics and integration of multi-omics data and approaches are especially welcome.
期刊最新文献
Omics Studies in CKD: Diagnostic Opportunities and Therapeutic Potential. Proteome integral solubility alteration via label-free DIA approach (PISA-DIA), game changer in drug target deconvolution. Transforming peptide hormone prediction: The role of AI in modern proteomics. Integrative Proteomic and Phosphoproteomic Profiling Reveals the Salt-Responsive Mechanisms in Two Rice Varieties (Oryza Sativa subsp. Japonica and Indica). Proteomics analysis of round and wrinkled pea (Pisum sativum L.) seeds during different development periods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1