Shea L. Johnson, Galen Missig, Minghua Wang, Kosalvisal Ouk, Kushali Gupta, Hanh Nho Nguyen, May Fern Toh, Tammy Szu-Yu Ho, David Gray, Hongjun Zhang, Yong Mi Choi-Sledeski, Claude Barberis, David J. Stone, Sokhom Pin, Jongwon Lim
{"title":"Discovery of the first selective, small-molecule GFRα2/3 inhibitors through DNA-encoded library technology","authors":"Shea L. Johnson, Galen Missig, Minghua Wang, Kosalvisal Ouk, Kushali Gupta, Hanh Nho Nguyen, May Fern Toh, Tammy Szu-Yu Ho, David Gray, Hongjun Zhang, Yong Mi Choi-Sledeski, Claude Barberis, David J. Stone, Sokhom Pin, Jongwon Lim","doi":"10.1016/j.bmcl.2024.129889","DOIUrl":null,"url":null,"abstract":"<div><p>Studies have shown that disrupting the formation of the ligand-RET-GFRα complex could be an effective way of treating pain and itch. Compared to traditional high-throughput screens, DNA encoded libraries (DELs) have distinguished themselves as a powerful technology for hit identification in recent years. The present work demonstrates the use of DEL technology identifying compound 16 as the first GFRa2/GFRa3 small molecule inhibitor (0.1/0.2 μM respectively) selective over RET. This molecule represents an opportunity to advance the development of small-molecule inhibitors targeting the GFRα-RET interface for the treatment of pain and itch.</p></div>","PeriodicalId":256,"journal":{"name":"Bioorganic & Medicinal Chemistry Letters","volume":"110 ","pages":"Article 129889"},"PeriodicalIF":2.5000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic & Medicinal Chemistry Letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960894X24002919","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Studies have shown that disrupting the formation of the ligand-RET-GFRα complex could be an effective way of treating pain and itch. Compared to traditional high-throughput screens, DNA encoded libraries (DELs) have distinguished themselves as a powerful technology for hit identification in recent years. The present work demonstrates the use of DEL technology identifying compound 16 as the first GFRa2/GFRa3 small molecule inhibitor (0.1/0.2 μM respectively) selective over RET. This molecule represents an opportunity to advance the development of small-molecule inhibitors targeting the GFRα-RET interface for the treatment of pain and itch.
期刊介绍:
Bioorganic & Medicinal Chemistry Letters presents preliminary experimental or theoretical research results of outstanding significance and timeliness on all aspects of science at the interface of chemistry and biology and on major advances in drug design and development. The journal publishes articles in the form of communications reporting experimental or theoretical results of special interest, and strives to provide maximum dissemination to a large, international audience.