Seyedali Seyedmajidi, Maryam Seyedmajidi, Sina Haghanifar
{"title":"Optimization of Fluorapatite/Bioactive Glass Nanocomposite Foams as Bone Tissue Scaffold: An in Vivo Study.","authors":"Seyedali Seyedmajidi, Maryam Seyedmajidi, Sina Haghanifar","doi":"10.22088/IJMCM.BUMS.12.4.388","DOIUrl":null,"url":null,"abstract":"<p><p>The present study investigated the suitability of nanocomposite foams of fluorapatite and bioactive glass (FA /BG) in different weight ratios as scaffolds for bone tissue in rat tibia regeneration to determine the optimal composition. FA and BG nano powders with a weight ratio of 25% FA/75% BG (compound 1) and 75% FA/25% BG (compound 2) were used as precursors for gel casting to produce nanocomposite foams. Thirty rats were randomly divided into two equal groups. Disk-shaped samples of each compound were implanted into the tibias of 15 rats. After 15, 30, or 60 days, five rats from each group were sacrificed and subjected to radiological, histopathological, and histomorphometrical examination. Data were analyzed using SPSS software. No foreign body reaction was observed in either group at all intervals, and the bone-biomaterial junction was direct. Overall, the inflammation rate, and the number of blood vessels, osteoblasts, and osteoclasts decreased over time in both groups. However, the number of osteocytes, trabecular bone thickness, and the percentage of new bone formation increased, in contrast to the remaining biomaterial percentage. Most of the changes in the group implanted with compound 2 were significantly more significant and faster than in the other group. Although the composite with the higher percentage of FA was superior to the composite with the higher percentage of BG, considering the results of our previous similar studies, the composite with the same percentage of FA and BG is more favorable to be used as a substitute for bone tissue in the body.</p>","PeriodicalId":14152,"journal":{"name":"International Journal of Molecular and Cellular Medicine","volume":"12 4","pages":"388-400"},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11240056/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular and Cellular Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22088/IJMCM.BUMS.12.4.388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The present study investigated the suitability of nanocomposite foams of fluorapatite and bioactive glass (FA /BG) in different weight ratios as scaffolds for bone tissue in rat tibia regeneration to determine the optimal composition. FA and BG nano powders with a weight ratio of 25% FA/75% BG (compound 1) and 75% FA/25% BG (compound 2) were used as precursors for gel casting to produce nanocomposite foams. Thirty rats were randomly divided into two equal groups. Disk-shaped samples of each compound were implanted into the tibias of 15 rats. After 15, 30, or 60 days, five rats from each group were sacrificed and subjected to radiological, histopathological, and histomorphometrical examination. Data were analyzed using SPSS software. No foreign body reaction was observed in either group at all intervals, and the bone-biomaterial junction was direct. Overall, the inflammation rate, and the number of blood vessels, osteoblasts, and osteoclasts decreased over time in both groups. However, the number of osteocytes, trabecular bone thickness, and the percentage of new bone formation increased, in contrast to the remaining biomaterial percentage. Most of the changes in the group implanted with compound 2 were significantly more significant and faster than in the other group. Although the composite with the higher percentage of FA was superior to the composite with the higher percentage of BG, considering the results of our previous similar studies, the composite with the same percentage of FA and BG is more favorable to be used as a substitute for bone tissue in the body.
期刊介绍:
The International Journal of Molecular and Cellular Medicine (IJMCM) is a peer-reviewed, quarterly publication of Cellular and Molecular Biology Research Center (CMBRC), Babol University of Medical Sciences, Babol, Iran. The journal covers all cellular & molecular biology and medicine disciplines such as the genetic basis of disease, biomarker discovery in diagnosis and treatment, genomics and proteomics, bioinformatics, computer applications in human biology, stem cells and tissue engineering, medical biotechnology, nanomedicine, cellular processes related to growth, death and survival, clinical biochemistry, molecular & cellular immunology, molecular and cellular aspects of infectious disease and cancer research. IJMCM is a free access journal. All open access articles published in IJMCM are distributed under the terms of the Creative Commons Attribution CC BY. The journal doesn''t have any submission and article processing charges (APCs).