Charlotte Kyeremah, Matthew Weiss, Dila Kandel, Daniel Haehn, Chandra Yelleswarapu
{"title":"Single-beam digital holographic reconstruction: a phase-support enhanced complex wavefront on phase-only function for twin-image elimination.","authors":"Charlotte Kyeremah, Matthew Weiss, Dila Kandel, Daniel Haehn, Chandra Yelleswarapu","doi":"10.1117/1.JBO.29.7.076502","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>In in-line digital holographic microscopy (DHM), twin-image artifacts pose a significant challenge, and reduction or complete elimination is essential for object reconstruction.</p><p><strong>Aim: </strong>To facilitate object reconstruction using a single hologram, significantly reduce inaccuracies, and avoid iterative processing, a digital holographic reconstruction algorithm called phase-support constraint on phase-only function (PCOF) is presented.</p><p><strong>Approach: </strong>In-line DHM simulations and tabletop experiments employing the sliding-window approach are used to compute the arithmetic mean and variance of the phase values in the reconstructed image. A support constraint mask, through variance thresholding, effectively enabled twin-image artifacts.</p><p><strong>Results: </strong>Quantitative evaluations using metrics such as mean squared error, peak signal-to-noise ratio, and mean structural similarity index show PCOF's superior capability in eliminating twin-image artifacts and achieving high-fidelity reconstructions compared with conventional methods such as angular spectrum and iterative phase retrieval methods.</p><p><strong>Conclusions: </strong>PCOF stands as a promising approach to in-line digital holographic reconstruction, offering a robust solution to mitigate twin-image artifacts and enhance the fidelity of reconstructed objects.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"29 7","pages":"076502"},"PeriodicalIF":3.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11246103/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Optics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JBO.29.7.076502","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Significance: In in-line digital holographic microscopy (DHM), twin-image artifacts pose a significant challenge, and reduction or complete elimination is essential for object reconstruction.
Aim: To facilitate object reconstruction using a single hologram, significantly reduce inaccuracies, and avoid iterative processing, a digital holographic reconstruction algorithm called phase-support constraint on phase-only function (PCOF) is presented.
Approach: In-line DHM simulations and tabletop experiments employing the sliding-window approach are used to compute the arithmetic mean and variance of the phase values in the reconstructed image. A support constraint mask, through variance thresholding, effectively enabled twin-image artifacts.
Results: Quantitative evaluations using metrics such as mean squared error, peak signal-to-noise ratio, and mean structural similarity index show PCOF's superior capability in eliminating twin-image artifacts and achieving high-fidelity reconstructions compared with conventional methods such as angular spectrum and iterative phase retrieval methods.
Conclusions: PCOF stands as a promising approach to in-line digital holographic reconstruction, offering a robust solution to mitigate twin-image artifacts and enhance the fidelity of reconstructed objects.
期刊介绍:
The Journal of Biomedical Optics publishes peer-reviewed papers on the use of modern optical technology for improved health care and biomedical research.