The use of the self-organizing map (SOM) methodology to study the dissolved organic matter (DOM) in different water body types.

IF 2.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Water Science and Technology Pub Date : 2024-07-01 Epub Date: 2024-06-25 DOI:10.2166/wst.2024.219
Han Song, Liangmin Gao, Xiaolong Li, Kai Zhang, Jieyu Xia, Xin Shu, Lin Wu
{"title":"The use of the self-organizing map (SOM) methodology to study the dissolved organic matter (DOM) in different water body types.","authors":"Han Song, Liangmin Gao, Xiaolong Li, Kai Zhang, Jieyu Xia, Xin Shu, Lin Wu","doi":"10.2166/wst.2024.219","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated the characteristics of dissolved organic matter (DOM) in two distinct water bodies, through the utilization of three-dimensional fluorescence spectroscopy coupled with self-organizing map (SOM) methodology. Specifically, this analysis concentrated on neurons 3, 14, and 17 within the SOM model, identifying notable differences in the DOM compositions of a coal subsidence water body (TX) and the MaChang Reservoir (MC). The humic substance content of DOM TX exceeded that of MC. The origin of DOM in TX was primarily linked to agricultural inputs and rainfall runoff, whereas the DOM in MC was associated with human activities, displaying distinctive autochthonous features and heightened biological activity. Principal component analysis revealed that humic substances dominated the DOM in TX, while the natural DOM in MC was primarily autochthonous. Furthermore, a multiple linear regression model (MLR) determined that external pollution was responsible for 99.11% of variation in the humification index (HIX) of water bodies.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"90 1","pages":"373-383"},"PeriodicalIF":2.5000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wst.2024.219","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigated the characteristics of dissolved organic matter (DOM) in two distinct water bodies, through the utilization of three-dimensional fluorescence spectroscopy coupled with self-organizing map (SOM) methodology. Specifically, this analysis concentrated on neurons 3, 14, and 17 within the SOM model, identifying notable differences in the DOM compositions of a coal subsidence water body (TX) and the MaChang Reservoir (MC). The humic substance content of DOM TX exceeded that of MC. The origin of DOM in TX was primarily linked to agricultural inputs and rainfall runoff, whereas the DOM in MC was associated with human activities, displaying distinctive autochthonous features and heightened biological activity. Principal component analysis revealed that humic substances dominated the DOM in TX, while the natural DOM in MC was primarily autochthonous. Furthermore, a multiple linear regression model (MLR) determined that external pollution was responsible for 99.11% of variation in the humification index (HIX) of water bodies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用自组织图(SOM)方法研究不同水体类型中的溶解有机物(DOM)。
本研究利用三维荧光光谱和自组织图(SOM)方法,研究了两个不同水体中溶解有机物(DOM)的特征。具体而言,该分析集中于自组织图模型中的神经元 3、14 和 17,确定了煤沉降水体(TX)和马厂水库(MC)中 DOM 成分的显著差异。TX DOM 的腐殖质含量超过 MC。TX水体中DOM的来源主要与农业投入和降雨径流有关,而MC水体中的DOM则与人类活动有关,显示出明显的自生特征和更强的生物活性。主成分分析表明,德克萨斯州的 DOM 以腐殖质为主,而管委会的天然 DOM 主要是自生的。此外,多元线性回归模型(MLR)确定,水体腐殖化指数(HIX)99.11%的变化是由外部污染造成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Water Science and Technology
Water Science and Technology 环境科学-工程:环境
CiteScore
4.90
自引率
3.70%
发文量
366
审稿时长
4.4 months
期刊介绍: Water Science and Technology publishes peer-reviewed papers on all aspects of the science and technology of water and wastewater. Papers are selected by a rigorous peer review procedure with the aim of rapid and wide dissemination of research results, development and application of new techniques, and related managerial and policy issues. Scientists, engineers, consultants, managers and policy-makers will find this journal essential as a permanent record of progress of research activities and their practical applications.
期刊最新文献
Factorial experiment to identify two-way interactions between temperature, harvesting period, hydraulic retention time, and light intensity that influence the biomass productivity and phosphorus removal efficiency of a microalgae-bacteria biofilm. Hybrid modelling framework for ozonation and biological activated carbon in tertiary wastewater treatment. Impact of chemical oxygen demand to nitrogen ratio on ANAMMOX bacterial growth in an up-flow anaerobic sludge blanket reactor. Reduction of blue and total water footprints per unit biomass yield of silage maize with grey water footprint input in subsurface drip irrigation. Simulation-based process optimization of full-scale advanced wastewater treatment systems using powdered activated carbon.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1