Rapid Quantification of Oxidized and Reduced Forms of Glutathione Using Ortho -phthalaldehyde in Cultured Mammalian Cells In Vitro.

IF 1.2 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES Jove-Journal of Visualized Experiments Pub Date : 2024-06-28 DOI:10.3791/66267
Craig McBeth, David Brown, Pawel Pokorski, Lydia Lei, Vicki Stone
{"title":"Rapid Quantification of Oxidized and Reduced Forms of Glutathione Using Ortho -phthalaldehyde in Cultured Mammalian Cells In Vitro.","authors":"Craig McBeth, David Brown, Pawel Pokorski, Lydia Lei, Vicki Stone","doi":"10.3791/66267","DOIUrl":null,"url":null,"abstract":"<p><p>Glutathione has long been considered a key biomarker for determining the antioxidant response of the cell. Hence, it is a primary marker for reactive oxygen species studies. The method utilizes Ortho-phthalaldehyde (OPA) to quantify the cellular concentration of glutathione(s). OPA conjugates with reduced glutathione (GSH) via sulfhydryl binding to subsequently form an isoindole, resulting in a highly fluorescent conjugate. To attain an accurate result of both oxidized glutathione (GSSG) and GSH, a combination of masking agents and reducing agents, which have been implemented in this protocol, are required. Treatments may also impact cellular viability. Hence, normalization via protein assay is presented in this multiparametric assay. The assay demonstrates a pseudo-linear detection range of 0.234 - 30µM (R<sup>2</sup>=0.9932±0.007 (N=12)) specific to GSH. The proposed assay also allows for the determination of oxidized glutathione with the addition of the masking agent N-ethylmaleimide to bind reduced glutathione, and the reducing agent tris(2-carboxyethyl) phosphine is introduced to cleave the disulfide bond in GSSG to produce two molecules of GSH. The assay is used in combination with a validated bicinchoninic acid assay for protein quantification and an adenylate kinase assay for cytotoxicity assessment.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jove-Journal of Visualized Experiments","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3791/66267","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Glutathione has long been considered a key biomarker for determining the antioxidant response of the cell. Hence, it is a primary marker for reactive oxygen species studies. The method utilizes Ortho-phthalaldehyde (OPA) to quantify the cellular concentration of glutathione(s). OPA conjugates with reduced glutathione (GSH) via sulfhydryl binding to subsequently form an isoindole, resulting in a highly fluorescent conjugate. To attain an accurate result of both oxidized glutathione (GSSG) and GSH, a combination of masking agents and reducing agents, which have been implemented in this protocol, are required. Treatments may also impact cellular viability. Hence, normalization via protein assay is presented in this multiparametric assay. The assay demonstrates a pseudo-linear detection range of 0.234 - 30µM (R2=0.9932±0.007 (N=12)) specific to GSH. The proposed assay also allows for the determination of oxidized glutathione with the addition of the masking agent N-ethylmaleimide to bind reduced glutathione, and the reducing agent tris(2-carboxyethyl) phosphine is introduced to cleave the disulfide bond in GSSG to produce two molecules of GSH. The assay is used in combination with a validated bicinchoninic acid assay for protein quantification and an adenylate kinase assay for cytotoxicity assessment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用邻苯二甲醛对体外培养的哺乳动物细胞中氧化型和还原型谷胱甘肽进行快速定量。
谷胱甘肽一直被认为是确定细胞抗氧化反应的关键生物标志物。因此,它是活性氧研究的主要标志物。该方法利用邻苯二甲醛(OPA)来量化细胞中的谷胱甘肽浓度。OPA 通过巯基结合与还原型谷胱甘肽(GSH)共轭,随后形成异吲哚,产生高荧光共轭物。为了准确测定氧化谷胱甘肽(GSSG)和还原谷胱甘肽(GSH),需要结合使用掩蔽剂和还原剂,本方案中就使用了掩蔽剂和还原剂。处理也可能影响细胞活力。因此,本多参数测定法通过蛋白质测定进行归一化。该检测方法对 GSH 的检测范围为 0.234 - 30µM(R2=0.9932±0.007(N=12))。通过加入掩蔽剂 N-乙基马来酰亚胺来结合还原型谷胱甘肽,再加入还原剂三(2-羧乙基)膦来裂解 GSSG 中的二硫键,生成两个分子的 GSH,该检测方法还可测定氧化型谷胱甘肽。该检测法与用于蛋白质定量的有效双喹啉酸检测法和用于细胞毒性评估的腺苷酸激酶检测法结合使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Jove-Journal of Visualized Experiments
Jove-Journal of Visualized Experiments MULTIDISCIPLINARY SCIENCES-
CiteScore
2.10
自引率
0.00%
发文量
992
期刊介绍: JoVE, the Journal of Visualized Experiments, is the world''s first peer reviewed scientific video journal. Established in 2006, JoVE is devoted to publishing scientific research in a visual format to help researchers overcome two of the biggest challenges facing the scientific research community today; poor reproducibility and the time and labor intensive nature of learning new experimental techniques.
期刊最新文献
A Rapid Method to Confine and Safely Handle Bees in the Field. Characterizing Mediated Extracellular Electron Transfer in Lactic Acid Bacteria with a Three-Electrode, Two-Chamber Bioelectrochemical System. Consistent Delivery of Adeno-Associated Virus via Lateral Tail-Vein Injection in Adult Mice. Detection of DNA Breaks in Dividing Human Cells by Neutral Comet Assay. Effective Detection of Hoechst Side Population Cells by Flow Cytometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1