Finite element simulation of treatment with locking plate for distal fibula fractures.

IF 2.4 4区 医学 Q3 ENGINEERING, BIOMEDICAL Physical and Engineering Sciences in Medicine Pub Date : 2024-07-15 DOI:10.1007/s13246-024-01456-3
Yafeng Li, Zichun Zou, Peng Yi, Chen Xu, Zhifeng Tian, Xi Zhang, Jing Zhang
{"title":"Finite element simulation of treatment with locking plate for distal fibula fractures.","authors":"Yafeng Li, Zichun Zou, Peng Yi, Chen Xu, Zhifeng Tian, Xi Zhang, Jing Zhang","doi":"10.1007/s13246-024-01456-3","DOIUrl":null,"url":null,"abstract":"<p><p>An improved Finite Element Model(FEM) is applied to compare the biomechanical stability of plates with three different options in the treatment of distal fibula fractures in this study. The Computed Tomography(CT) scan of the knee to ankle segment of a volunteer was performed. A 3D fibula FEM was reconstructed based on the CT data. Three different loads (uni-pedal standing, torsion, and twisting) were applied, the same as in the experiments in the literature. The stresses and strains of the three options were compared under the same loads, using a 4-hole locking plate (Option A), a 5-hole locking plate (Option B), and a 6-hole locking plate (Option C) in a standard plate for lateral internal fixation. The simulation results show that all three options showed a stress masking effect. Option C had the best overall biomechanical performance and could effectively distribute the transferred weight. This is because option C has greater torsional stiffness and better biomechanical stability than options A and B, and therefore, option C is the recommended internal fixation method for distal fibula fractures. The Finite Element Analysis(FEA) method developed in this work applies to the stress analysis of fracture treatment options in other body parts.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical and Engineering Sciences in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13246-024-01456-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

An improved Finite Element Model(FEM) is applied to compare the biomechanical stability of plates with three different options in the treatment of distal fibula fractures in this study. The Computed Tomography(CT) scan of the knee to ankle segment of a volunteer was performed. A 3D fibula FEM was reconstructed based on the CT data. Three different loads (uni-pedal standing, torsion, and twisting) were applied, the same as in the experiments in the literature. The stresses and strains of the three options were compared under the same loads, using a 4-hole locking plate (Option A), a 5-hole locking plate (Option B), and a 6-hole locking plate (Option C) in a standard plate for lateral internal fixation. The simulation results show that all three options showed a stress masking effect. Option C had the best overall biomechanical performance and could effectively distribute the transferred weight. This is because option C has greater torsional stiffness and better biomechanical stability than options A and B, and therefore, option C is the recommended internal fixation method for distal fibula fractures. The Finite Element Analysis(FEA) method developed in this work applies to the stress analysis of fracture treatment options in other body parts.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用锁定钢板治疗腓骨远端骨折的有限元模拟。
本研究采用改进的有限元模型(FEM)来比较三种不同选择的钢板在治疗腓骨远端骨折时的生物力学稳定性。研究人员对一名志愿者的膝盖至脚踝部位进行了计算机断层扫描(CT)。根据 CT 数据重建了三维腓骨有限元模型。应用了三种不同的载荷(单蹄站立、扭转和扭转),与文献中的实验相同。在相同载荷下,比较了三种方案的应力和应变,分别使用 4 孔锁定钢板(方案 A)、5 孔锁定钢板(方案 B)和 6 孔锁定钢板(方案 C)作为侧向内固定的标准钢板。模拟结果显示,三种方案都显示出应力掩蔽效应。方案 C 的整体生物力学性能最佳,能有效分散转移的重量。这是因为与方案 A 和 B 相比,方案 C 具有更大的扭转刚度和更好的生物力学稳定性,因此,方案 C 是腓骨远端骨折的推荐内固定方法。本研究开发的有限元分析方法适用于身体其他部位骨折治疗方案的应力分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.40
自引率
4.50%
发文量
110
期刊最新文献
PET/CT-based 3D multi-class semantic segmentation of ovarian cancer and the stability of the extracted radiomics features. PPG2RespNet: a deep learning model for respirational signal synthesis and monitoring from photoplethysmography (PPG) signal Ecg signal watermarking using QR decomposition Effect of mirror system and scanner bed of a flatbed scanner on lateral response artefact in radiochromic film dosimetry A deep learning phase-based solution in 2D echocardiography motion estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1