Bacteriophage Removal from Infected Salmonella Cultures.

IF 1.2 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES Jove-Journal of Visualized Experiments Pub Date : 2024-06-28 DOI:10.3791/66855
Rocío Fernández-Fernández, David R Olivenza, María Antonia Sánchez-Romero
{"title":"Bacteriophage Removal from Infected Salmonella Cultures.","authors":"Rocío Fernández-Fernández, David R Olivenza, María Antonia Sánchez-Romero","doi":"10.3791/66855","DOIUrl":null,"url":null,"abstract":"<p><p>Bacteriophages, or simply phages, play a vital role in microbial environments, impacting bacterial populations and shaping their evolution and interactions. These organisms are viruses that infect and replicate within bacterial hosts. Phages are ubiquitous on Earth, highly diverse, and very abundant. While bacteriophages have valuable roles in different environments and are a key area of research in microbiology and ecology, their presence can be undesirable in certain industrial processes or products. Considering the abundance and ubiquity of bacteriophages on Earth, the design of procedures for the removal of bacteriophages from bacterial cultures is crucial in diverse laboratory and industrial applications to preserve the integrity of the cultures and ensure accurate experimental results or product quality. Here, we have fine-tuned a protocol to eliminate the bacteriophages from infected Salmonella enterica cultures, using a strategy based on the use of lipopolysaccharides (LPS) located in the outer membrane of Gram-negative bacteria. Bacterial LPS plays an important role in host recognition by phages, and we make use of this property to design an effective procedure for the removal of phages, which use LPS as a receptor, in Salmonella bacterial cultures.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jove-Journal of Visualized Experiments","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3791/66855","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Bacteriophages, or simply phages, play a vital role in microbial environments, impacting bacterial populations and shaping their evolution and interactions. These organisms are viruses that infect and replicate within bacterial hosts. Phages are ubiquitous on Earth, highly diverse, and very abundant. While bacteriophages have valuable roles in different environments and are a key area of research in microbiology and ecology, their presence can be undesirable in certain industrial processes or products. Considering the abundance and ubiquity of bacteriophages on Earth, the design of procedures for the removal of bacteriophages from bacterial cultures is crucial in diverse laboratory and industrial applications to preserve the integrity of the cultures and ensure accurate experimental results or product quality. Here, we have fine-tuned a protocol to eliminate the bacteriophages from infected Salmonella enterica cultures, using a strategy based on the use of lipopolysaccharides (LPS) located in the outer membrane of Gram-negative bacteria. Bacterial LPS plays an important role in host recognition by phages, and we make use of this property to design an effective procedure for the removal of phages, which use LPS as a receptor, in Salmonella bacterial cultures.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从受感染的沙门氏菌培养物中去除噬菌体
噬菌体(简称噬菌体)在微生物环境中发挥着至关重要的作用,影响着细菌种群,并左右着它们的进化和相互作用。这些生物是在细菌宿主体内感染和复制的病毒。噬菌体在地球上无处不在,种类繁多,数量巨大。虽然噬菌体在不同环境中发挥着重要作用,并且是微生物学和生态学的一个关键研究领域,但在某些工业过程或产品中,它们的存在可能是不可取的。考虑到噬菌体在地球上的大量存在和无处不在,在各种实验室和工业应用中,设计从细菌培养物中清除噬菌体的程序对于保持培养物的完整性、确保准确的实验结果或产品质量至关重要。在这里,我们利用基于革兰氏阴性细菌外膜上的脂多糖(LPS)的策略,对消除受感染的肠炎沙门氏菌培养物中的噬菌体的方案进行了微调。细菌的 LPS 在噬菌体识别宿主方面发挥着重要作用,我们利用这一特性设计了一种有效的程序,用于清除沙门氏菌培养物中以 LPS 为受体的噬菌体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Jove-Journal of Visualized Experiments
Jove-Journal of Visualized Experiments MULTIDISCIPLINARY SCIENCES-
CiteScore
2.10
自引率
0.00%
发文量
992
期刊介绍: JoVE, the Journal of Visualized Experiments, is the world''s first peer reviewed scientific video journal. Established in 2006, JoVE is devoted to publishing scientific research in a visual format to help researchers overcome two of the biggest challenges facing the scientific research community today; poor reproducibility and the time and labor intensive nature of learning new experimental techniques.
期刊最新文献
A Rapid Method to Confine and Safely Handle Bees in the Field. Characterizing Mediated Extracellular Electron Transfer in Lactic Acid Bacteria with a Three-Electrode, Two-Chamber Bioelectrochemical System. Consistent Delivery of Adeno-Associated Virus via Lateral Tail-Vein Injection in Adult Mice. Detection of DNA Breaks in Dividing Human Cells by Neutral Comet Assay. Effective Detection of Hoechst Side Population Cells by Flow Cytometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1