An alternative parameterization for the binormal ROC curve, with applications to sizing and simulation studies.

Stephen L Hillis
{"title":"An alternative parameterization for the binormal ROC curve, with applications to sizing and simulation studies.","authors":"Stephen L Hillis","doi":"10.1117/12.3008642","DOIUrl":null,"url":null,"abstract":"<p><p>Because the conventional binormal ROC curve parameters are in terms of the underlying normal diseased and nondiseased rating distributions, transformations of these values are required for the user to understand what the corresponding ROC curve looks like in terms of its shape and size. In this paper I propose an alternative parameterization in terms of parameters that explicitly describe the shape and size of the ROC curve. The proposed two parameters are the mean-to-sigma ratio and the familiar area under the ROC curve (AUC), which are easily interpreted in terms of the shape and size of the ROC curve, respectively. In addition, the mean-to-sigma ratio describes the degree of improperness of the ROC curve and the AUC describes the ability of the corresponding diagnostic test to discriminate between diseased and nondiseased cases. The proposed parameterization simplifies the sizing of diagnostic studies when conjectured variance components are used and simplifies choosing the binormal <i>a</i> and <i>b</i> parameter values needed for simulation studies.</p>","PeriodicalId":74505,"journal":{"name":"Proceedings of SPIE--the International Society for Optical Engineering","volume":"12929 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11243637/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of SPIE--the International Society for Optical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3008642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/29 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Because the conventional binormal ROC curve parameters are in terms of the underlying normal diseased and nondiseased rating distributions, transformations of these values are required for the user to understand what the corresponding ROC curve looks like in terms of its shape and size. In this paper I propose an alternative parameterization in terms of parameters that explicitly describe the shape and size of the ROC curve. The proposed two parameters are the mean-to-sigma ratio and the familiar area under the ROC curve (AUC), which are easily interpreted in terms of the shape and size of the ROC curve, respectively. In addition, the mean-to-sigma ratio describes the degree of improperness of the ROC curve and the AUC describes the ability of the corresponding diagnostic test to discriminate between diseased and nondiseased cases. The proposed parameterization simplifies the sizing of diagnostic studies when conjectured variance components are used and simplifies choosing the binormal a and b parameter values needed for simulation studies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二正态 ROC 曲线的另一种参数化方法,并将其应用于规模和模拟研究。
由于传统的二正态 ROC 曲线参数是以基本的正常患病和非患病评级分布为基础的,因此用户需要对这些值进行转换,才能了解相应 ROC 曲线的形状和大小。在本文中,我提出了另一种参数化方法,即用参数来明确描述 ROC 曲线的形状和大小。所提出的两个参数分别是均值-σ比和我们熟悉的 ROC 曲线下面积(AUC),这两个参数很容易分别用 ROC 曲线的形状和大小来解释。此外,均值-σ比描述了 ROC 曲线的不恰当程度,而 AUC 则描述了相应诊断测试区分患病和非患病病例的能力。建议的参数化简化了使用猜想方差分量时诊断研究的规模,并简化了模拟研究中所需的双正态 a 和 b 参数值的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
期刊最新文献
Automated multi-lesion annotation in chest X-rays: annotating over 450,000 images from public datasets using the AI-based Smart Imagery Framing and Truthing (SIFT) system. High-Fidelity 3D Reconstruction for Accurate Anatomical Measurements in Endoscopic Sinus Surgery. Optimizing parylene and photoconductor thickness in indirect conversion amorphous selenium detectors. Intra- and inter-scanner CT variability and their impact on diagnostic tasks. Quantitative Accuracy of CT Protocols for Cross-sectional and Longitudinal Assessment of COPD: A Virtual Imaging Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1