Jooae Choe, Hye Jeon Hwang, Sang Min Lee, Jihye Yoon, Namkug Kim, Joon Beom Seo
{"title":"CT Quantification of Interstitial Lung Abnormality and Interstitial Lung Disease: From Technical Challenges to Future Directions.","authors":"Jooae Choe, Hye Jeon Hwang, Sang Min Lee, Jihye Yoon, Namkug Kim, Joon Beom Seo","doi":"10.1097/RLI.0000000000001103","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>Interstitial lung disease (ILD) encompasses a variety of lung disorders with varying degrees of inflammation or fibrosis, requiring a combination of clinical, imaging, and pathologic data for evaluation. Imaging is essential for the noninvasive diagnosis of the disease, as well as for assessing disease severity, monitoring its progression, and evaluating treatment response. However, traditional visual assessments of ILD with computed tomography (CT) suffer from reader variability. Automated quantitative CT offers a more objective approach by using computer-based analysis to consistently evaluate and measure ILD. Advancements in technology have significantly improved the accuracy and reliability of these measurements. Recently, interstitial lung abnormalities (ILAs), which represent potential preclinical ILD incidentally found on CT scans and are characterized by abnormalities in over 5% of any lung zone, have gained attention and clinical importance. The challenge lies in the accurate and consistent identification of ILA, given that its definition relies on a subjective threshold, making quantitative tools crucial for precise ILA evaluation. This review highlights the state of CT quantification of ILD and ILA, addressing clinical and research disparities while emphasizing how machine learning or deep learning in quantitative imaging can improve diagnosis and management by providing more accurate assessments, and finally, suggests the future directions of quantitative CT in this area.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Investigative Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/RLI.0000000000001103","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract: Interstitial lung disease (ILD) encompasses a variety of lung disorders with varying degrees of inflammation or fibrosis, requiring a combination of clinical, imaging, and pathologic data for evaluation. Imaging is essential for the noninvasive diagnosis of the disease, as well as for assessing disease severity, monitoring its progression, and evaluating treatment response. However, traditional visual assessments of ILD with computed tomography (CT) suffer from reader variability. Automated quantitative CT offers a more objective approach by using computer-based analysis to consistently evaluate and measure ILD. Advancements in technology have significantly improved the accuracy and reliability of these measurements. Recently, interstitial lung abnormalities (ILAs), which represent potential preclinical ILD incidentally found on CT scans and are characterized by abnormalities in over 5% of any lung zone, have gained attention and clinical importance. The challenge lies in the accurate and consistent identification of ILA, given that its definition relies on a subjective threshold, making quantitative tools crucial for precise ILA evaluation. This review highlights the state of CT quantification of ILD and ILA, addressing clinical and research disparities while emphasizing how machine learning or deep learning in quantitative imaging can improve diagnosis and management by providing more accurate assessments, and finally, suggests the future directions of quantitative CT in this area.
期刊介绍:
Investigative Radiology publishes original, peer-reviewed reports on clinical and laboratory investigations in diagnostic imaging, the diagnostic use of radioactive isotopes, computed tomography, positron emission tomography, magnetic resonance imaging, ultrasound, digital subtraction angiography, and related modalities. Emphasis is on early and timely publication. Primarily research-oriented, the journal also includes a wide variety of features of interest to clinical radiologists.