Xu Shi, Christos Gekas, Daniel Verduzco, Sakina Petiwala, Cynthia Jeffries, Charles Lu, Erin Murphy, Tifani Anton, Andy H. Vo, Zhiguang Xiao, Padmini Narayanan, Bee-Chun Sun, Aloma L. D’Souza, J. Matthew Barnes, Somdutta Roy, Cyril Ramathal, Michael J. Flister, Zoltan Dezso
{"title":"Building a translational cancer dependency map for The Cancer Genome Atlas","authors":"Xu Shi, Christos Gekas, Daniel Verduzco, Sakina Petiwala, Cynthia Jeffries, Charles Lu, Erin Murphy, Tifani Anton, Andy H. Vo, Zhiguang Xiao, Padmini Narayanan, Bee-Chun Sun, Aloma L. D’Souza, J. Matthew Barnes, Somdutta Roy, Cyril Ramathal, Michael J. Flister, Zoltan Dezso","doi":"10.1038/s43018-024-00789-y","DOIUrl":null,"url":null,"abstract":"Cancer dependency maps have accelerated the discovery of tumor vulnerabilities that can be exploited as drug targets when translatable to patients. The Cancer Genome Atlas (TCGA) is a compendium of ‘maps’ detailing the genetic, epigenetic and molecular changes that occur during the pathogenesis of cancer, yet it lacks a dependency map to translate gene essentiality in patient tumors. Here, we used machine learning to build translational dependency maps for patient tumors, which identified tumor vulnerabilities that predict drug responses and disease outcomes. A similar approach was used to map gene tolerability in healthy tissues to prioritize tumor vulnerabilities with the best therapeutic windows. A subset of patient-translatable synthetic lethalities were experimentally tested, including PAPSS1/PAPSS12 and CNOT7/CNOT78, which were validated in vitro and in vivo. Notably, PAPSS1 synthetic lethality was driven by collateral deletion of PAPSS2 with PTEN and was correlated with patient survival. Finally, the translational dependency map is provided as a web-based application for exploring tumor vulnerabilities. Shi et al. present a hybrid dependency map based on machine-learning analysis of gene essentiality data from the DEPMAP database, translated to data from TCGA. This application can be used to visualize other gene essentiality data.","PeriodicalId":18885,"journal":{"name":"Nature cancer","volume":"5 8","pages":"1176-1194"},"PeriodicalIF":23.5000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43018-024-00789-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature cancer","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s43018-024-00789-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cancer dependency maps have accelerated the discovery of tumor vulnerabilities that can be exploited as drug targets when translatable to patients. The Cancer Genome Atlas (TCGA) is a compendium of ‘maps’ detailing the genetic, epigenetic and molecular changes that occur during the pathogenesis of cancer, yet it lacks a dependency map to translate gene essentiality in patient tumors. Here, we used machine learning to build translational dependency maps for patient tumors, which identified tumor vulnerabilities that predict drug responses and disease outcomes. A similar approach was used to map gene tolerability in healthy tissues to prioritize tumor vulnerabilities with the best therapeutic windows. A subset of patient-translatable synthetic lethalities were experimentally tested, including PAPSS1/PAPSS12 and CNOT7/CNOT78, which were validated in vitro and in vivo. Notably, PAPSS1 synthetic lethality was driven by collateral deletion of PAPSS2 with PTEN and was correlated with patient survival. Finally, the translational dependency map is provided as a web-based application for exploring tumor vulnerabilities. Shi et al. present a hybrid dependency map based on machine-learning analysis of gene essentiality data from the DEPMAP database, translated to data from TCGA. This application can be used to visualize other gene essentiality data.
期刊介绍:
Cancer is a devastating disease responsible for millions of deaths worldwide. However, many of these deaths could be prevented with improved prevention and treatment strategies. To achieve this, it is crucial to focus on accurate diagnosis, effective treatment methods, and understanding the socioeconomic factors that influence cancer rates.
Nature Cancer aims to serve as a unique platform for sharing the latest advancements in cancer research across various scientific fields, encompassing life sciences, physical sciences, applied sciences, and social sciences. The journal is particularly interested in fundamental research that enhances our understanding of tumor development and progression, as well as research that translates this knowledge into clinical applications through innovative diagnostic and therapeutic approaches. Additionally, Nature Cancer welcomes clinical studies that inform cancer diagnosis, treatment, and prevention, along with contributions exploring the societal impact of cancer on a global scale.
In addition to publishing original research, Nature Cancer will feature Comments, Reviews, News & Views, Features, and Correspondence that hold significant value for the diverse field of cancer research.