{"title":"Phenotypic characterization and gene mapping of hybrid necrosis in Triticum durum-Haynaldia villosa amphiploids.","authors":"Yangqi Liu, Jinhong Liu, Zhenpu Huang, Kaiwen Fan, Xinshuo Guo, Liping Xing, Aizhong Cao","doi":"10.1007/s00122-024-04691-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>Phenotypical, physiological and genetic characterization was carried out on the hybrid necrosis gene from Haynaldia villosa, and the related gene Ne-V was mapped to chromosome arm 2VL. Introducing genetic variation from wild relatives into common wheat through wide crosses is a vital strategy for enriching genetic diversity and promoting wheat breeding. However, hybrid necrosis, a genetic autoimmunity syndrome, often occurs in the offspring of interspecific or intraspecific crosses, restricting both the selection of hybrid parents and the pyramiding of beneficial genes. To utilize the germplasms of Haynaldia villosa (2n = 2x = 14, VV), we conducted wide hybridization between durum wheat (2n = 4x = 28, AABB) and multiple H. villosa accessions to synthesize the amphiploids (2n = 6x = 42, AABBVV). This study revealed that 61.5% of amphiploids derived from the above crosses exhibited hybrid necrosis, with some amphiploids even dying before reaching maturity. However, the initiation time and severity of necrosis varied dramatically among the progenies, suggesting that there were multiple genetic loci or multiple alleles in the same genetic locus conferring to hybrid necrosis in H. villosa accessions. Genetic analysis was performed on the F<sub>2</sub> and derived F<sub>2:3</sub> populations, which were constructed between amphiploid STH59-1 with normal leaves and amphiploid STH59-2 with necrotic leaves. A semidominant hybrid necrosis-related gene, Ne-V, was mapped to an 11.8-cM genetic interval on the long arm of chromosome 2V, representing a novel genetic locus identified in Triticum-related species. In addition, the hybrid necrosis was correlated with enhanced H<sub>2</sub>O<sub>2</sub> accumulation and cell death, and it was influenced by the temperature and light. Our findings provide a foundation for cloning the Ne-V gene and exploring its molecular mechanism.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"137 8","pages":"185"},"PeriodicalIF":4.4000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11249415/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Genetics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00122-024-04691-0","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Key message: Phenotypical, physiological and genetic characterization was carried out on the hybrid necrosis gene from Haynaldia villosa, and the related gene Ne-V was mapped to chromosome arm 2VL. Introducing genetic variation from wild relatives into common wheat through wide crosses is a vital strategy for enriching genetic diversity and promoting wheat breeding. However, hybrid necrosis, a genetic autoimmunity syndrome, often occurs in the offspring of interspecific or intraspecific crosses, restricting both the selection of hybrid parents and the pyramiding of beneficial genes. To utilize the germplasms of Haynaldia villosa (2n = 2x = 14, VV), we conducted wide hybridization between durum wheat (2n = 4x = 28, AABB) and multiple H. villosa accessions to synthesize the amphiploids (2n = 6x = 42, AABBVV). This study revealed that 61.5% of amphiploids derived from the above crosses exhibited hybrid necrosis, with some amphiploids even dying before reaching maturity. However, the initiation time and severity of necrosis varied dramatically among the progenies, suggesting that there were multiple genetic loci or multiple alleles in the same genetic locus conferring to hybrid necrosis in H. villosa accessions. Genetic analysis was performed on the F2 and derived F2:3 populations, which were constructed between amphiploid STH59-1 with normal leaves and amphiploid STH59-2 with necrotic leaves. A semidominant hybrid necrosis-related gene, Ne-V, was mapped to an 11.8-cM genetic interval on the long arm of chromosome 2V, representing a novel genetic locus identified in Triticum-related species. In addition, the hybrid necrosis was correlated with enhanced H2O2 accumulation and cell death, and it was influenced by the temperature and light. Our findings provide a foundation for cloning the Ne-V gene and exploring its molecular mechanism.
期刊介绍:
Theoretical and Applied Genetics publishes original research and review articles in all key areas of modern plant genetics, plant genomics and plant biotechnology. All work needs to have a clear genetic component and significant impact on plant breeding. Theoretical considerations are only accepted in combination with new experimental data and/or if they indicate a relevant application in plant genetics or breeding. Emphasizing the practical, the journal focuses on research into leading crop plants and articles presenting innovative approaches.