Kjetil Lysne Voje, Megumi Saito-Kato, Trisha L Spanbauer
{"title":"Evolution in fossil time series reconciles observations in micro- and macroevolution.","authors":"Kjetil Lysne Voje, Megumi Saito-Kato, Trisha L Spanbauer","doi":"10.1093/jeb/voae087","DOIUrl":null,"url":null,"abstract":"<p><p>Extrapolating microevolutionary models does not always provide satisfactory explanations for phenotypic diversification on million-year time scales. For example, short-term evolutionary change is often modeled assuming a fixed adaptive landscape, but macroevolutionary changes are likely to involve changes in the adaptive landscape itself. A better understanding of how the adaptive landscape changes across different time intervals and how these changes cause populations to evolve has the potential to narrow the gap between micro- and macroevolution. Here, we analyze two fossil diatom time series of exceptional quality and resolution covering time intervals of a few hundred thousand years using models that account for different behaviors of the adaptive landscape. We find that one of the lineages evolves on a randomly and continuously changing landscape, whereas the other lineage evolves on a landscape that shows a rapid shift in the position of the adaptive peak of a magnitude that is typically associated with species-level differentiation. This suggests phenotypic evolution beyond generational timescales may be a consequence of both gradual and sudden repositioning of adaptive peaks. Both lineages are showing rapid and erratic evolutionary change and are constantly readapting towards the optimal trait state, observations that align with evolutionary dynamics commonly observed in contemporary populations. The inferred trait evolution over a span of a few hundred thousand years in these two lineages is therefore chimeric in the sense that it combines components of trait evolution typically observed on both short and long timescales.</p>","PeriodicalId":50198,"journal":{"name":"Journal of Evolutionary Biology","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Evolutionary Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jeb/voae087","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Extrapolating microevolutionary models does not always provide satisfactory explanations for phenotypic diversification on million-year time scales. For example, short-term evolutionary change is often modeled assuming a fixed adaptive landscape, but macroevolutionary changes are likely to involve changes in the adaptive landscape itself. A better understanding of how the adaptive landscape changes across different time intervals and how these changes cause populations to evolve has the potential to narrow the gap between micro- and macroevolution. Here, we analyze two fossil diatom time series of exceptional quality and resolution covering time intervals of a few hundred thousand years using models that account for different behaviors of the adaptive landscape. We find that one of the lineages evolves on a randomly and continuously changing landscape, whereas the other lineage evolves on a landscape that shows a rapid shift in the position of the adaptive peak of a magnitude that is typically associated with species-level differentiation. This suggests phenotypic evolution beyond generational timescales may be a consequence of both gradual and sudden repositioning of adaptive peaks. Both lineages are showing rapid and erratic evolutionary change and are constantly readapting towards the optimal trait state, observations that align with evolutionary dynamics commonly observed in contemporary populations. The inferred trait evolution over a span of a few hundred thousand years in these two lineages is therefore chimeric in the sense that it combines components of trait evolution typically observed on both short and long timescales.
期刊介绍:
It covers both micro- and macro-evolution of all types of organisms. The aim of the Journal is to integrate perspectives across molecular and microbial evolution, behaviour, genetics, ecology, life histories, development, palaeontology, systematics and morphology.