Manja Mølgaard Severinsen, Simone Bachleitner, Viola Modenese, Özge Ata, Diethard Mattanovich
{"title":"Efficient production of itaconic acid from the single-carbon substrate methanol with engineered Komagataella phaffii","authors":"Manja Mølgaard Severinsen, Simone Bachleitner, Viola Modenese, Özge Ata, Diethard Mattanovich","doi":"10.1186/s13068-024-02541-1","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Amidst the escalating carbon dioxide levels resulting from fossil fuel consumption, there is a pressing need for sustainable, bio-based alternatives to underpin future global economies. Single-carbon feedstocks, derived from CO<sub>2</sub>, represent promising substrates for biotechnological applications. Especially, methanol is gaining prominence for bio-production of commodity chemicals.</p><h3>Results</h3><p>In this study, we show the potential of <i>Komagataella phaffii</i> as a production platform for itaconic acid using methanol as the carbon source. Successful integration of heterologous genes from <i>Aspergillus terreus</i> (<i>cadA</i>, <i>mttA</i> and <i>mfsA</i>) alongside fine-tuning of the <i>mfsA</i> gene expression, led to promising initial itaconic acid titers of 28 g·L<sup>−1</sup> after 5 days of fed-batch cultivation. Through the combined efforts of process optimization and strain engineering strategies, we further boosted the itaconic acid production reaching titers of 55 g·L<sup>−1</sup> after less than 5 days of methanol feed, while increasing the product yield on methanol from 0.06 g·g<sup>−1</sup> to 0.24 g·g<sup>−1</sup>.</p><h3>Conclusion</h3><p>Our results highlight the potential of <i>K. phaffii</i> as a methanol-based platform organism for sustainable biochemical production.</p></div>","PeriodicalId":494,"journal":{"name":"Biotechnology for Biofuels","volume":"17 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://biotechnologyforbiofuels.biomedcentral.com/counter/pdf/10.1186/s13068-024-02541-1","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology for Biofuels","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1186/s13068-024-02541-1","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Amidst the escalating carbon dioxide levels resulting from fossil fuel consumption, there is a pressing need for sustainable, bio-based alternatives to underpin future global economies. Single-carbon feedstocks, derived from CO2, represent promising substrates for biotechnological applications. Especially, methanol is gaining prominence for bio-production of commodity chemicals.
Results
In this study, we show the potential of Komagataella phaffii as a production platform for itaconic acid using methanol as the carbon source. Successful integration of heterologous genes from Aspergillus terreus (cadA, mttA and mfsA) alongside fine-tuning of the mfsA gene expression, led to promising initial itaconic acid titers of 28 g·L−1 after 5 days of fed-batch cultivation. Through the combined efforts of process optimization and strain engineering strategies, we further boosted the itaconic acid production reaching titers of 55 g·L−1 after less than 5 days of methanol feed, while increasing the product yield on methanol from 0.06 g·g−1 to 0.24 g·g−1.
Conclusion
Our results highlight the potential of K. phaffii as a methanol-based platform organism for sustainable biochemical production.
期刊介绍:
Biotechnology for Biofuels is an open access peer-reviewed journal featuring high-quality studies describing technological and operational advances in the production of biofuels, chemicals and other bioproducts. The journal emphasizes understanding and advancing the application of biotechnology and synergistic operations to improve plants and biological conversion systems for the biological production of these products from biomass, intermediates derived from biomass, or CO2, as well as upstream or downstream operations that are integral to biological conversion of biomass.
Biotechnology for Biofuels focuses on the following areas:
• Development of terrestrial plant feedstocks
• Development of algal feedstocks
• Biomass pretreatment, fractionation and extraction for biological conversion
• Enzyme engineering, production and analysis
• Bacterial genetics, physiology and metabolic engineering
• Fungal/yeast genetics, physiology and metabolic engineering
• Fermentation, biocatalytic conversion and reaction dynamics
• Biological production of chemicals and bioproducts from biomass
• Anaerobic digestion, biohydrogen and bioelectricity
• Bioprocess integration, techno-economic analysis, modelling and policy
• Life cycle assessment and environmental impact analysis