Copper-Based Materials as an Effective Strategy for Improving Drought Resistance in Soybean (Glycine max) at the Reproductive Stage

IF 2.3 Q1 AGRICULTURE, MULTIDISCIPLINARY ACS agricultural science & technology Pub Date : 2024-06-28 DOI:10.1021/acsagscitech.4c00193
Jingyi Zhou, Yi Wang, Nubia Zuverza-Mena, Christian O. Dimkpa and Jason C. White*, 
{"title":"Copper-Based Materials as an Effective Strategy for Improving Drought Resistance in Soybean (Glycine max) at the Reproductive Stage","authors":"Jingyi Zhou,&nbsp;Yi Wang,&nbsp;Nubia Zuverza-Mena,&nbsp;Christian O. Dimkpa and Jason C. White*,&nbsp;","doi":"10.1021/acsagscitech.4c00193","DOIUrl":null,"url":null,"abstract":"<p >Drought is among the most damaging climatic hazards affecting crop productivity and nutritional quality. Here, we investigated the influence of Cu-based materials at mitigating drought stress in soybeans (<i>Glycine max</i>) during the reproductive stage in order to elucidate effects on productivity. Commercial copper oxide (CuO) nanoparticles (NPs), in-house synthesized copper sulfide (CuS) NPs, and copper sulfate (CuSO<sub>4</sub>) were foliar applied at 10 mg Cu/L daily for 1 week to soybean that were exposed to water deficit at the onset of flowering, and plants were harvested 5 days after exposure. Drought inhibited flower production by 27% compared to the nondrought treatment. Notably, both CuS NPs and ionic Cu mitigated the drought-induced inhibition of flower production, showing 41.7 and 33.3% improvement. CuS NPs exhibited the most positive impact on restoring shoot biomass, pod biomass, and shoot moisture content, increasing values by 53, 96, and 10%, respectively, compared to the drought control plants. The Cu-based materials maintained photosynthetic parameters under drought conditions and modulated oxidative damage by enhancing reactive oxygen species-scavenging enzyme activities. Furthermore, CuO NP treatment increased shoot and pod Cu levels by 624 and 54%, respectively, compared to the drought control plants. Taken together, these findings suggest that Cu-based materials modulate plant protective mechanisms against drought stress during the flowering stage, offering a potentially important nanoenabled strategy to promote biofortified climate resilient crops.</p>","PeriodicalId":93846,"journal":{"name":"ACS agricultural science & technology","volume":"4 7","pages":"735–746"},"PeriodicalIF":2.3000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS agricultural science & technology","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsagscitech.4c00193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Drought is among the most damaging climatic hazards affecting crop productivity and nutritional quality. Here, we investigated the influence of Cu-based materials at mitigating drought stress in soybeans (Glycine max) during the reproductive stage in order to elucidate effects on productivity. Commercial copper oxide (CuO) nanoparticles (NPs), in-house synthesized copper sulfide (CuS) NPs, and copper sulfate (CuSO4) were foliar applied at 10 mg Cu/L daily for 1 week to soybean that were exposed to water deficit at the onset of flowering, and plants were harvested 5 days after exposure. Drought inhibited flower production by 27% compared to the nondrought treatment. Notably, both CuS NPs and ionic Cu mitigated the drought-induced inhibition of flower production, showing 41.7 and 33.3% improvement. CuS NPs exhibited the most positive impact on restoring shoot biomass, pod biomass, and shoot moisture content, increasing values by 53, 96, and 10%, respectively, compared to the drought control plants. The Cu-based materials maintained photosynthetic parameters under drought conditions and modulated oxidative damage by enhancing reactive oxygen species-scavenging enzyme activities. Furthermore, CuO NP treatment increased shoot and pod Cu levels by 624 and 54%, respectively, compared to the drought control plants. Taken together, these findings suggest that Cu-based materials modulate plant protective mechanisms against drought stress during the flowering stage, offering a potentially important nanoenabled strategy to promote biofortified climate resilient crops.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铜基材料是提高大豆(Glycine max)生殖期抗旱性的有效策略
干旱是影响作物产量和营养质量的最具破坏性的气候灾害之一。在此,我们研究了铜基材料在缓解大豆(Glycine max)生殖期干旱胁迫方面的影响,以阐明其对生产力的影响。将商用氧化铜(CuO)纳米颗粒(NPs)、内部合成的硫化铜(CuS)纳米颗粒和硫酸铜(CuSO4)以每天 10 毫克 Cu/L 的浓度叶面喷施到开花初期缺水的大豆上,持续 1 周。与非干旱处理相比,干旱抑制了 27% 的花朵生产。值得注意的是,CuS NPs 和离子铜都减轻了干旱对花朵生产的抑制,分别改善了 41.7% 和 33.3%。CuS NPs 在恢复嫩枝生物量、豆荚生物量和嫩枝含水量方面表现出了最积极的影响,与干旱对照植物相比,分别增加了 53%、96% 和 10%。铜基材料能在干旱条件下维持光合参数,并通过提高活性氧清除酶活性来调节氧化损伤。此外,与干旱对照植物相比,CuO NP 处理使嫩枝和豆荚的铜含量分别增加了 624% 和 54%。综上所述,这些研究结果表明,铜基材料能调节植物在开花期对干旱胁迫的保护机制,为促进生物强化的气候适应性作物提供了一种潜在的重要纳米战略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
期刊最新文献
Issue Editorial Masthead Issue Publication Information Time-to-Failure Approach for Estimating the Shelf Life of Freeze-Dried Carotenoid-Enriched Apples: Forecasting the Deterioration of Quality Properties for Different Packaging Types and Storage Conditions Photo- and Thermo-Chemical Properties and Biological Activities of Saclipins, UV-Absorbing Compounds Derived from the Cyanobacterium Aphanothece sacrum Investigating the Effect of Oxygen, Carbon Dioxide, and Ethylene Gases on Khasi Mandarin’ Orange Fruit during Storage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1