Jingwei Zhou, Adriaan J. Teuling, Sonia I. Seneviratne, Annette L. Hirsch
{"title":"Soil Moisture-Temperature Coupling Increases Population Exposure to Future Heatwaves","authors":"Jingwei Zhou, Adriaan J. Teuling, Sonia I. Seneviratne, Annette L. Hirsch","doi":"10.1029/2024EF004697","DOIUrl":null,"url":null,"abstract":"<p>Heatwaves have significant effects on ecosystems and human health. Human habitability is impacted severely as human exposure to heatwaves is projected to increase, however, the contribution of soil moisture effects to the increased exposure is unknown. We use data from four climate models, in which two experiments are used to isolate soil moisture effects and in this way to examine projected changes of soil moisture contributions to projected increases in heatwave events. Contributions from soil moisture to future population exposure to heatwaves are also investigated. With soil moisture effects combined with global warming, the longest yearly heatwaves are found to increase by up to 20 days, intensify by up to 2°C in mean temperature, with an increasing of frequency by 15% (the percentage relative to the total number of days for a year) over most mid-latitude land regions by 2040–2070 under the SSP585 high emissions scenario. Furthermore, soil moisture changes are found to have a significant role in projected increases of multiple heatwave characteristics regionally compared with the global land area and contribute to more global population exposed to heatwaves.</p>","PeriodicalId":48748,"journal":{"name":"Earths Future","volume":null,"pages":null},"PeriodicalIF":7.3000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EF004697","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earths Future","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024EF004697","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Heatwaves have significant effects on ecosystems and human health. Human habitability is impacted severely as human exposure to heatwaves is projected to increase, however, the contribution of soil moisture effects to the increased exposure is unknown. We use data from four climate models, in which two experiments are used to isolate soil moisture effects and in this way to examine projected changes of soil moisture contributions to projected increases in heatwave events. Contributions from soil moisture to future population exposure to heatwaves are also investigated. With soil moisture effects combined with global warming, the longest yearly heatwaves are found to increase by up to 20 days, intensify by up to 2°C in mean temperature, with an increasing of frequency by 15% (the percentage relative to the total number of days for a year) over most mid-latitude land regions by 2040–2070 under the SSP585 high emissions scenario. Furthermore, soil moisture changes are found to have a significant role in projected increases of multiple heatwave characteristics regionally compared with the global land area and contribute to more global population exposed to heatwaves.
期刊介绍:
Earth’s Future: A transdisciplinary open access journal, Earth’s Future focuses on the state of the Earth and the prediction of the planet’s future. By publishing peer-reviewed articles as well as editorials, essays, reviews, and commentaries, this journal will be the preeminent scholarly resource on the Anthropocene. It will also help assess the risks and opportunities associated with environmental changes and challenges.